—. 10C %%

N E 2% 2 Rod. Johnson) =# 2 —: <<Professional Java Development with the spring framework> >, JIf{fi (1 F T & JEA G A8 4018
AT, WAEDIE, AR RS — R e !

LR NS B 1% http://jiwenke-spring.blogspot.com/, ¥ 5)

7ESpringH, IOCHE S E AT FRA VA Z UL T, XFFSpring{EFH# T E, IOCH 88 SLhs L4 ? FATnr LU BeanFactorysh /&
BTAVERMIoCHERS, 2R T Spring hy Jfi 1w T V2 FToCA AR, XHEA LU B RATAA R Z T, AFRFBHREAE, ANFRKE
e SUE DR AL AT I ToCH 4%

7ESpringt, fcdE AR (FIOCH A4 1 /& BeanFactory - 3X AN 11 4 HARIIOCH 3 1 SEIE T I e A I D Re e - ANEE A%, 1EAI0C
FEAT, IX UG IR UL S P FR P IR e B AR K

Java U5
1. public interface BeanFactory {
2
3 / /X H R FactoryBean % g X, Ny BAE 1] bean H 4% 74 % FactoryBean 33N % & T AR IR,
4 /IR EAGR T A S, 55
5o String FACTORY_BEAN_PREFIX = "&";
6
7
8 / /X B bean 45, 7F T0C A4 11153 bean 84, XA~ 10C A# & — KIS T
9 Object getBean(String name) throws BeansException;

10.
11. / /X FAR Y bean 142 F-F1 Class KRG E] bean 5245, F_LH I VEANFALET B M 75 WEARARIE 2 7 IUE 1 b
ean LB Class AR FE LA A AU

12. Object getBean(String name, Class requiredType) throws BeansException;
13.

14. //IERARBEXS bean KK R, FHHE LML I0C AdH X4 7 bean

15. boolean containsBean(String name);

16.

17. / /X FE bean 47435 bean S, I [I AIBHX A bean JE AN LA

18. boolean isSingleton(String name) throws NoSuchBeanDefinitionException;
118

20. [/X R 3E] bean SEfff) Class 27

21. Class getType(String name) throws NoSuchBeanDefinitionException;

22.

23. //IZRAGE] bean f 44, WA AR, WaILEA R R Tk

24. String[] getAliases(String name);

25.

26. }

7 BeanFactory HL % IOC 28 IFEAAT HAE T 52 3, RAARICORIN bean & EAE SUBFEIMEN - BEBAT SO AIXA T B
BAIRBNB A7 WS, BT L) R EAE XSG, XAEEARRE DA LIXLE, RSOGO T RER RS, N
AT T B AT TOC 222852 B- 48R IR T LA CARYEIX AN BeanFactory SESZHL A LK IOC 2588, {HIX/MEAH B3, K Spring 0.4
RBATERSLT T —RH LT RIERAMEM . ol XmIBeanFactory st & £1 %} fse 2kAifli (¥) BeanFactory 1) IOC 2243 (1 SEHL - X ANS2HAT H]
xml 3k 52 X I0C 743111 bean.

http://jiwenke-spring.blogspot.com/

Spring $21t 7" BeanFactory)54 528, XmlIBeanFactory [[i 4 FH AR AR k15 21 %F IOC 22814 % -
AbstractBeanFactory,DefaultListableBeanFactory ix £&4ih %2 b AR IR 45 . L rhidiad resource #1144 bean & s, X
Xml & SO (g #Til i Z59645 XmiBeanDefinitionReader Kk 5¢ . R HIFA TR 15 R A1, {8 L 30R I0C 228 M Qg 72

Java U105

1. ClassPathResource res = new ClassPathResource("beans.xml");

2. DefaultListableBeanFactory factory = new DefaultlListableBeanFactory();
3. XmlBeanDefinitionReader reader = new XmlBeanDefinitionReader(factory);
4

reader.loadBeanDefinitions(res);

XIS T UR LAY

1.) TOC ML & S ¥l 4 B U
2. i — BeanFactory
3. AL E (5 B 1) BeanDefinitionReader, 1% H! /& XmIBeanDefinitionReader fit &4+ BeanFactory
4, NGE UFRIR IR B SR B S, HAARf#YTLE th XmlIBeanDefinitionReader K 5g), IXFESE AL HA bean & XL .
AT ToC et idrilesk T 7 BeanFactory (ARG T F6A1 17T LLE 3.

Java U115
1. public class XmlBeanFactory extends DefaultListableBeanFactory {
2 /X B E ST BRI bean & SCEEHLAS
3 private final XmlBeanDefinitionReader reader = new XmlBeanDefinitionReader(this);
4. public XmlBeanFactory(Resource resource) throws BeansException {
5 this(resource, null);
6 }
7 /T AEAR IR BRE P AT FH B B SR DR AT 32X, 4331 bean & UfF H..
8 public XmlBeanFactory(Resource resource, BeanFactory parentBeanFactory) throws BeansExceptio
n {
9. super(parentBeanFactory);
10. this.reader.loadBeanDefinitions(resource);
11. }

A G T 437 SIS EAR SO IR A MY bean & AR BIHEAN R, FEA4 B2 R B SCm R BE —FEr), WX BEEATRTIE £ BT
F1 XmlBeanFactory iX# i IOC % 2% (1)[X 5], BeanFactory ﬁﬁKE%X\J‘%‘UE%XE@ﬁEﬁ, ML 3T A S5t die S, MWIXANM
-2 = o N S T Rt

{74043 #1 Spring BeanFactory (14544, A1k & 7E BeanFactory &4l -3 & Hi f¥) ApplicationContext - FAli M L T30, R T
H % BeanFactory [f14#EE), N30 R AR SR T V5 2 (8

* LA EEARFE NS W, 415 2 ApplicationContext 3 T MessageSource
* Ui R, PRBLZEXT ResourceLoader F1 Resource 2+ F1Hl, IXFEERATTAT LA R 77 753 31 bean & SL#EYH
* SRR A, 4kK T #2100 ApplicationEventPublisher, XAt B R S0 1N T LT BeanFactory S B H 11 .

ApplicationContext foF B F3CHkE - I RIFQ RO BIGERF AN B FSCR R - XAMERIRATE UG X Web 228 i) _E R SO G
A rT LIS AR 2. X T bean A AT LAEIXAS BRSCRRPORAE, BRI E AT NI, MR NI, B gn b, X

AR Spring AL T — ALK bean & BT, XANTRATITE /AT Web 2% ¥ R SRR BRI L AE S F .

ApplicationContext $#2{t: IoC #2811 4 1, ZEHAR R A2 #hi% T 25 a0 AbstractApplicationContext Jh H44[¥) BeanFactory [f]5E

B, Hein FileSystemXmlApplicationContext Al ClassPathXmlApplicationContext 32 it b 32 AR, Al At AT T I 7 3 5 HLAA PR 8 I

PR, 4 R R4S s2 1k FileSystemXmlApplicationContext (i i, 7351 ToC A4%) —Fh HAKEL B - ApplicationContext, MIfi
M R PR T ApplicationContext S5 Bt bean [F#1E .

BeanFactory &M%, fES<kri b 34T 4] ApplicationContext 28] IOC 254%, ‘eI 1 & 10C 2% e Bl 45 B 1 T & 2 () A
0. ST HREF IR &K, W LIk BeanFactory 1 ApplicationFactory 7E A [A] i F 2 i A K T SPRING #2411 IOC 2 2% IR
%o

FRA TG F#l FileSystemXmlApplicationContext /& & g vkt I0C Za8 1, S 5y WEATA LUE IS new S5 5] IoC 7585
Java Q15

1. ApplicationContext = new FileSystemXmlApplicationContext(xmlPath);

P R EWInAns:
Java X4
1. public FileSystemXmlApplicationContext(String[] configlLocations, boolean refresh, ApplicationContex
t parent)
throws BeansException {
super(parent);
this.configlocations = configlocations;
if (refresh) {
/ /X ToC A IWIAGEFRE, HAE R KBUL B th AbstractApplicationContext K X

refresh();

O 00 N O U b W N

refresh ({454 £E AbstractApplicationContext:

Java A4
1. public void refresh() throws BeansException, IllegalStateException {
2 synchronized (this.startupShutdownMonitor) {
3 synchronized (this.activeMonitor) {
4 this.active = true;
5. }
6
7 /] X BFTE TR B 50 BHEAL EE X, bean BN H) TOC A& T L 2
8 refreshBeanFactory();
® coooocoooocooc

10. }

XA S T 34N BeanFactory #IHA 4L I R, % T4 5E 16 FileSystemXmlBeanFactory, 3117 21 5& {7 %8 Ui A7 B 1y refreshBeanFactory()
KB
& AbstractXmlApplicationContext H 5 ST X R L 72, ZRA i XmIBeanDefinitionReader K321 :
Java 1R
protected void loadBeanDefinitions(DefaultListableBeanFactory beanFactory) throws IOException {
// XHA{fH] XMLBeanDefinitionReader K# A bean j& A5 B XML S

1
2
B XmlBeanDefinitionReader beanDefinitionReader = new XmlBeanDefinitionReader(beanFactory);
4
5

/ /X BEE reader [(J3F5E, Hrb ResourceLoader 2 AT E AL bean & X A5 E B AL 1K)

6. /77 H BRSO G52 T Resourceloader #2110, BT LART LA E %30 SC/E A Resourceloader {445 Xm1BeanDefi

nitionReader
7. beanDefinitionReader.setResourcelLoader(this);
8. beanDefinitionReader.setEntityResolver(new ResourceEntityResolver(this));
s
10. initBeanDefinitionReader(beanDefinitionReader);
11. / /X BRI 52 LA () Xm1BeanDefinitionReader F1XF# A bean fi Eb47 Ab B
12. loadBeanDefinitions(beanDefinitionReader);
13. }

5| beanDefinitionReader HH AT 4L FH :
Java {005

1. protected void loadBeanDefinitions(XmlBeanDefinitionReader reader) throws BeansException, IOExcepti

on {
2. Resource[] configResources = getConfigResources();
3. if (configResources != null) {
4. // Vi H] Xm1BeanDefinitionReader K# A\ bean & X5 5.
Bq reader.loadBeanDefinitions(configResources);
6. }
7. String[] configlLocations = getConfiglLocations();
8. if (configlLocations != null) {
9. reader.loadBeanDefinitions(configlLocations);
10. }
11. }

TMEEAE R Hehh 552241 AbstractBeanDefinitionReader H >k 2 LN IS 72 :

Java A4
1. public int loadBeanDefinitions(String location) throws BeanDefinitionStoreException {
2 / /X AR 4572 X ResourceLoader, Rk I3 A1 H] DefaultResourcelLoader
3 ResourceLoader resourceLoader = getResourcelLoader();

4. oiie.... [/ IR B R FIIRATF B ResourceLoader, B3I

5 if (resourcelLoader instanceof ResourcePatternResolver) {

6 // X BN IRATTAE S B A % pattern, 75 % ResourcePatternResolver K58

7

8

try {
Resource[] resources = ((ResourcePatternResolver) resourcelLoader).getResources(locatio

n);
9. int loadCount = loadBeanDefinitions(resources);
10. return loadCount;
11. }
%6 ococooooo
13. }
14. else {
15. // X Resourceloader S5 Ay B iE I
16. Resource resource = resourcelLoader.getResource(location);
17. [/ X O A E LN Resource #2111, AL Xm1BeanDefinitionReader KA T

18. int loadCount = loadBeanDefinitions(resource);

19. return loadCount;
20. }
21. }

LA 15T ResourceLoader SREN K, 5 T T A 1H GenericApplicationContext th 528} T ResourceLoader 4% M :
Java Q15

1. public class GenericApplicationContext extends AbstractApplicationContext implements BeanDefinition

Registry {
2. public Resource getResource(String location) {
3. / /X B AT loader)i/ DefaultResourceloader K5¢ AN
4. if (this.resourcelLoader != null) {
5q return this.resourcelLoader.getResource(location);
6. }
7. return super.getResource(location);
8. }
®6 ooooooo
1e. }

i F&A 17 FileSystemXmlApplicationContext 3l /& — DefaultResourceLoader - GenericApplicationContext()il it

DefaultResourceLoader:
Java A4
1. public Resource getResource(String location) {
e /7SRRI T, IRFEAE A ClassPathResource K753 bean SCIEIN %A %
3. if (location.startsWith(CLASSPATH_URL_PREFIX)) {
4. return new ClassPathResource(location.substring(CLASSPATH_URL_PREFIX.length()), getClassLoa
der());
5. }
6. else {
7o try {
8. // WS URL 5, A UrlResource 7E 4 bean SRR % U %
9. URL url = new URL(location);
10. return new UrlResource(url);
11. }
12. catch (MalformedURLException ex) {
13. /7 BURIATE, IRBATARERALE 7 T ISRYEM AT AR BN R T
14. return getResourceByPath(location);
15. }
16. }
17. }

FATH) FileSystemXmlApplicationContext 4 & st 2 /& DefaultResourceLoader =82, AhsEl 7 LU R H#2 A
Java fh5

1. protected Resource getResourceByPath(String path) {

2 if (path != null && path.startsWith("/")) {

S path = path.substring(1);
4

5. / /X EAE IS RGBS Gk E X bean A

return new FileSystemResource(path);

(o))

Rk E 2] T FileSystemXmlApplicationContext K, il T FileSystemResource K 5¢ M S0 2R G815 21 & SO 1 FE Y5 52 Mo
XHE, AT DO R G A% ok TOC e & SCAFEAT IR - R FRATT AT AR FRUX AN 48 MATATT 77 N2, & Spring th &A1 1 £l e f it
& Fhgz kst %, toin ClassPathResource, URLResource, FileSystemResource 25k AL A1 H . b FeAl 15 2 (1) 2 %2 A7 Resource
AR, X R84y - IA1[E12) AbstractBeanDefinitionReaderz 7111 loadDefinitions(resource)k & F 15 #4L % bean
SCAR R B8R e LR AN I R, BRIA I FAT 1 F XmiBeanDefinitionReader:

Java fU14

1. public int loadBeanDefinitions(EncodedResource encodedResource) throws BeanDefinitionStoreExceptio
n {

2o ocoooooc

o try {

4. //iXH B Resource £45] InputStream /Y I0 i

5o InputStream inputStream = encodedResource.getResource().getInputStream();

6. try {

7. //M InputStream " 753 XML K fFHTIR

8. InputSource inputSource = new InputSource(inputStream);

9. if (encodedResource.getEncoding() != null) {

10. inputSource.setEncoding(encodedResource.getEncoding());

11. }

12. / 13X B BRI AT A I A

13 return doLoadBeanDefinitions(inputSource, encodedResource.getResource());

14. }

15 finally {

16. // MM Resource 1551 10 ¥

17. inputStream.close();

18. }

19. }

295 = oocoococoooo

21. }

22.

23. protected int doLoadBeanDefinitions(InputSource inputSource, Resource resource)

24, throws BeanDefinitionStoreException {

25 try {

26. int validationMode = getValidationModeForResource(resource);

27. / /3B ARHTIFE) DOM, 4R)5 5¢ % bean 71 TOC 284 i1

28. Document doc = this.documentLoader.loadDocument (

29. inputSource, this.entityResolver, this.errorHandler, validationMode, this.namespace
Aware);

30. return registerBeanDefinitions(doc, resource);

31. }

326 ocoooooo

TATVE 258 SOCAH#AT A DOM X%, AR JEHEAT HARIVE T A

Java fi5

1. public int registerBeanDefinitions(Document doc, Resource resource) throws BeanDefinitionStoreExcep

tion {

/] XELE RS, flTH XmlBeanDefinitionParser KMt xml 755 [1) bean & LM - IRAEMIRCASAS HIX A AT

T, Ml XmlBeanDefinitionReader

O 00 N oo v b W

11.
12.

if (this.parserClass != null) {

XmlBeanDefinitionParser parser =

(XmlBeanDefinitionParser) BeanUtils.instantiateClass(this.parserClass);

return parser.registerBeanDefinitions(this, doc, resource);
}
// BARIE AR , 1561551 Xm1BeanDefinitionReader, KA xml [¥) bean & S A
BeanDefinitionDocumentReader documentReader = createBeanDefinitionDocumentReader();
int countBefore = getBeanFactory().getBeanDefinitionCount();
documentReader.registerBeanDefinitions(doc, createReaderContext(resource));

return getBeanFactory().getBeanDefinitionCount() - countBefore;

H & 17F BeanDefinitionDocumentReader H 5¢ s, T 1 & — AN i 22 iy M F2 2k 5¢ ik bean & CSCAFRERTFI IOC 2545 bean (14

I
Java fi5

1
2
3
4
5o
6
7
8
9

10.
11.
12. }
13.

public void registerBeanDefinitions(Document doc, XmlReaderContext readerContext) {

this.readerContext = readerContext;

logger.debug("Loading bean definitions");

Element root = doc.getDocumentElement();
BeanDefinitionParserDelegate delegate = createHelper(readerContext, root);
preProcessXml(root);

parseBeanDefinitions(root, delegate);

postProcessXml(root);

14. protected void parseBeanDefinitions(Element root, BeanDefinitionParserDelegate delegate) {

15.
16.
17.
18.
15)
20.
21.
22.
23.

if (delegate.isDefaultNamespace(root.getNamespaceURI())) {
/X BAFE] xmd ST 7T 8, EEi A bean 5
NodeList nl = root.getChildNodes();

/ 1 IE B REAN T j AT 2 M b PR

for (int i = 90; i < nl.getLength(); i++) {
Node node = nl.item(i);
if (node instanceof Element) {

Element ele = (Element) node;

24. String namespaceUri = ele.getNamespaceURI();

25 if (delegate.isDefaultNamespace(namespaceUri)) {
26. /XL AR, XS e R AT 20 EE i bean JTER
27. parseDefaultElement(ele, delegate);

28. }

29. else {

30. delegate.parseCustomElement(ele);

31. }

32. }

33. }

34. } else {

35. delegate.parseCustomElement(root);

36. }

37. }

38.

39. private void parseDefaultElement(Element ele, BeanDefinitionParserDelegate delegate) {

40. / /XX JCE Import $HATALFE

41. if (DomUtils.nodeNameEquals(ele, IMPORT_ELEMENT)) {

42. importBeanDefinitionResource(ele);

43. }

44, else if (DomUtils.nodeNameEquals(ele, ALIAS_ELEMENT)) {

45, String name = ele.getAttribute(NAME_ATTRIBUTE);

46. String alias = ele.getAttribute(ALIAS_ATTRIBUTE);

47. getReaderContext().getReader().getBeanFactory().registerAlias(name, alias);

48. getReaderContext().fireAliasRegistered(name, alias, extractSource(ele));

49, }

50. /X B A TR bean JURUEAT i

51. else if (DomUtils.nodeNameEquals(ele, BEAN_ELEMENT)) {

52. //Z4T45 BeanDefinitionParserDelegate K52 st bean G AL, XA T BAKK bean T FE.

53. // ERENT bean SCAT {5 S8 3 BeanDefinition L, fi)& bean {5 B T2 2 14, 112 TOC A #S AT IEN 5

54. BeanDefinitionHolder bdHolder = delegate.parseBeanDefinitionElement(ele);

55. if (bdHolder != null) {

56. bdHolder = delegate.decorateBeanDefinitionIfRequired(ele, bdHolder);

57. /7 XHLIE R I0C FAEN, Sbr AR S T0C A& — map H

58. BeanDefinitionReaderUtils.registerBeanDefinition(bdHolder, getReaderContext().getRegist
ry());

59.

60. /7 XHLE TOC s AL, AT ANE M 5E B

61. getReaderContext().fireComponentRegistered(new BeanComponentDefinition(bdHolder));

62. }

63. }

64. }

FAE B7E parseBeanDefinition Hxt B A% bean 7o & i HT 304 BeanDefinitionParserDelegate K5 Ry, N1 IRATE B AT 5 1)
bean J2& /EF:7E IOC 22 28 Hh T M
1t BeanDefinitionReaderUtils i/ JH) /2 :

Java Q15

1. public static void registerBeanDefinition(

2o BeanDefinitionHolder bdHolder, BeanDefinitionRegistry beanFactory) throws BeansExceptio
n{

So

4. [/ EXBARBIFEEN] bean K4

Bq String beanName = bdHolder.getBeanName();

6. //IXFE A T0C RIEMH) bean [t FE, 752433 BeanDefinition

7. beanFactory.registerBeanDefinition(beanName, bdHolder.getBeanDefinition());

8.

e // AR AT LGl T0C 2545 Al bean BEFREK I EAT VT

10. String[] aliases = bdHolder.getAliases();

11. if (aliases != null) {

12. for (int i = 90; i < aliases.length; i++) {

13. beanFactory.registerAlias(beanName, aliases[i]);

14. }

15. }

16. }

FA1EF XmIBeanFactory " 3 I S :
Java £G4

1
2
3
4
5. public void registerBeanDefinition(String beanName, BeanDefinition beanDefinition)
6 throws BeanDefinitionStoreException {

7

8

9

..... //iXHARIE T % BeanDefinition K5k f
[/ RBEEABRHRLEAZCLA T FAK bean, WA H 7 H
10. Object oldBeanDefinition = this.beanDefinitionMap.get(beanName);
11. if (oldBeanDefinition != null) {
12. if (!this.allowBeanDefinitionOverriding) {
8% coooooooooo
14, }
15. else {
16. / /42 bean 4 5 1E T0C A £
17. this.beanDefinitionNames.add(beanName);
18. }
19. / /X AT bean (4 7 A Bean 5 I FRAZHIKF—A> HashMap F12:, TOC A #eill it iX /> Map SR 4EFH 25 2% 1L 1) Bean 5& X
R
20. this.beanDefinitionMap.put(beanName, beanDefinition);
21. removeSingleton(beanName);
22.}

XFERLER T Bean & XAE IOC Zds P RvENT, mtnl B IOC A g BEAT A BAE] 1

M T AR, BATE L F I0C A s I HEA D 3%

* BRI IE 38 S 1) refresh() i FH Sk ¢ i

* %} bean 5 M EEA I0C 75334 F ¥ /5% /2 loadBeanDefinition, 2L (1) K BOI #2401 T« il it Resourceloader Sk 5¢ B Y SC AR E 1
&7, DefaultResourceLoader /EZRINMKSLHL, RN LR CA G4 T ResourceLoader (523, Al LLNKERAE, WIFERSE, URL &7
ok N BN E . W& XmlIBeanFactory 124 IOC 248, B4 FE N EHEE bean & XM TtIR, st /& i bean & X 304 8 i 4l
% Resource k4 I0C 72234 B, #24%iH 1t BeanDefinitionReader i 5¢ s SUAw B HIAEATFI Bean 17 & AIVE M, 41448 FH 0 2
XmlBeanDefinitionReader K f##T bean [xml & X 3O - S2brir) Ak PR FE 244 BeanDefinitionParserDelegate i 52)& 11, MiMifS
F| bean fI5E X5 K., XUs{E K7E Spring 48 1] BeanDefinition % %ok or - X A4 77T LLiEIRATIAE S
loadBeanDefinition,RegisterBeanDefinition iX LEAHIC [/7% - AT 1#2 4 4b 21 BeanDefinitin fIx45- 1), ToC 75 %5 fif# 4745 1] BeanDefinition
PUE, F30EAe I0C z2gshi/l, X I0C sz8 BeanDefinitionRegistry 43 M K528 1M REt 248 TOC 8% A Bl 4kd (1) — A
HashMap >k {r1715 2% BeanDefinition [¥)id 2. X/~ HashMap ;2 IoC & #3#7H bean 5.8 111377, LS X bean M E#L &l &ix 4
HashMap >ksEHLH .

* BRJE FAT] LA 1T BeanFactory #11 ApplicationContext k%252 2 Spring 10C (K45 T .
FEAL] TOC R 4R KA, FRATIT R BIBR T /> SOk S AU, 45K 2 5 LLIERT ToC KUk 4 S 1 R HTRR PR AR 56 4 AN H S o T B3k 1)
DR Ay 25 28 H AR 000 5 15 25 28 8 PRI JLAd 0 SR BT — bl o BEAR TR SR AT L) TR AN 7 s S5l JSE X TR AL W R S s
7, DA AR S PR 5 225 W) 1) (7. Spring A BHRHE T X B web B R T AN T BT, IRHILAEAE7E
ServletContext H1 ARSI . AR LS WLLL S (0 30 %
744 H Spring TIOC 75 25 11 5 B A1 T34 75 22 DX 0 W5 At «
Beanfactory #1 Factory bean, Il BeanFactory $i1) & IOC 725 (W 4ifRd 4%, thin ApplicationContext, XmlBeanFactory 4%, ix1&
IOC 28 1 EARK I, 75 B A A FE 25 5% %5 7 v (3 Spring h3AT 144 T 2 & ik . i FactoryBean Hj&—ANnl BA#E I0C
P3P BEIK > bean, J&hf %5 Fi b B RN B YR AL H (4 %, Factory bean 7E 7R ZEIN =4 7 — AW 4, i~k [E| FactoryBean A4,
PTATT LRSS AR L), e AR R L) 57 5. JrA T Factory bean #5Si BURFI I
org.springframework.beans.factory.FactoryBean #11, i %% %%+ factory bean [, %4842 iR IH factory bean A&, T/
IR [EIFAE XS . Spring LG T G4 1438 F e R AT IR 25 Vs I il 4 (1) Factory bean [¥)SGBl, 4%
%t INDI Erifi AL, SHRH G ALEE, X F 5 MEACE AL EE, Xt RMIARER A AbFE A, IXSERATHE 0] AR B BRI L), & Ao
SPRING A FATEEAL I 1) L) Wi it Spring B Al A% L) AN BAIER T — RS L) KAE/™ g N %, Sbr®AIFL
HREM AR, FoATEl i LT 54 TOC 248 WL B 4 s AR AR 7 (8 A4 7 7 o

IAETAIRE B ALE Spring HIZE(HLH], Spring " 3 AMbrifEZif4:, ContextRefreshEvent, ContextCloseEvent,RequestHandledEvent fif

fi1iE 1t ApplicationEvent #2211, [RIRER) W R T2 5 g XHa) s R 52l ApplicationEvent #:0, 2| ContextCloseEvent f) Sz A LA
el ISESNINE S LRSI

Java 1R
1. public class ContextClosedEvent extends ApplicationEvent {
2
3 public ContextClosedEvent(ApplicationContext source) {
4 super(source);
5. }
6
7 public ApplicationContext getApplicationContext() {
8 return (ApplicationContext) getSource();
9 }

10. }

AJ LU @3 ApplicationEventPublishAware #2111, #1544 & A1 8454 21 ApplicationContext X4 1] LU] ApplicationContext HE %2k
FEIE R B B, 2R J5 7T ApplicationContext Hic & 4f bean BLAT LA T, 7EW S B b, #5220l 5d st 3 ApplicationListener #21i
M.

Eb i my L #2248] Spring 1) ScheduleTimerTask Al TimerFactoryBean 11 2 5 I % & I 77 2450 8., BAR T LAS WL Spring HEZE = 8 i FE) o
TimerFactoryBean J&:—~ L) bean, %}H:# ¥ ScheduleTimerTask #:4T4bFfFHiH, 2% ScheduleTimerTask ()58 & BL'E % J5 1
¥ 2 jre) TimerTask:
Java U105

1. public void setRunnable(Runnable timerTask) {

2. this.timerTask = new DelegatingTimerTask(timerTask);

3.}

TR PL T —ANE R IETE BT, 48R w] L) DU e I 38/ E AR s, AR i

1.7 X MethodInvokingTimerTaskFactoryBean & X ZEHAT IH14 € bean 4w E Tk, S Bt A g 733 5E X

2.5E X TimerTask 2§, ifiid extends TimerTask 331, [R] i) 7 BT 2 64T B & X

RIGFHEE LA BN 324, Eid il E ScheduledTimerTask (250 timerTask K52, AR 28 8 E UK BB,
timerTask J& 751 LU48 € i1 bean

Java 1R
1. private TimerTask timerTask;
2
3. private long delay = 0;
4.
5. private long period = 0;
6
7. private boolean fixedRate = false;

W5, F%1r ApplicationContext Hyi:fJt, 75424 ScheduledTimerTask /it %] FactoryBean - TimerFactoryBean, X4t IOC %5 4%
RAGPIEIN ST . 2 TimerFactoryBean @M, AT LLE HI—41E 1IN 2%,

Java U115
1. public class TimerFactoryBean implements FactoryBean, InitializingBean, DisposableBean {
2
3 protected final Log logger = LogFactory.getlLog(getClass());
4
Bq private ScheduledTimerTask[] scheduledTimerTasks;
6
7 private boolean daemon = false;
8
9 private Timer timer;
10.
ililc cocooocooo0000
12. }

U SR Ak N () FAT] R 75 BT € MUY ScheduledTimerTasks ' publish s IR T AT o BARRT LLZ 4 b i 7 (1S3, X
S 454 FactoryBean (R BEAL—SLffRe . R &5 & SRR RUE IR ILE], FRATAT LURDT (8 952 B heartbeat(F 1 1410) , 345 i 77X A
By, XA TSk E45E T Spring FAFRUE N HLHIFIAE AT AR - 998 TIE A 10C A& iAniR (fEFT Spring)W HI B ALHK
HEA I0C FIBEIR: D

loC A 331t Web AT HESN

PRSI EfE%: http://jiwenke-spring.blogspot.com/
Lﬁ}k1l]’\+ﬁTIOC2§%§7I<§H’J7&fmy T HERA G BRI web 5, Spring IOCH#% & B B AFLEAE 1.

TR UL, iweb%idsth, did ServietContext’hySpringWIOCH 42 i T304, XM Arie —MOCHESEIMIER . Hrb, HAERE
HESLHEMR TR, JX/H:TI%ﬁH"JXﬂL%Wuﬁ\II&%XﬂL%, AN S, B, FYEEREEM P EEA G TR BRSO
fil b, Flweb MVCHIZGIE S A —A 1 F SCRIRAFEE A 2 RIIMVCH 5, XA R T — AN 2 A R 4k . fEwebZEds 1A 3)
Spring ¥ AR P2 — AN LIX A BTSRRI . Spring hweb N BT ER SO R E T
WebApplicationContext:

Java f0h5
1. public interface WebApplicationContext extends ApplicationContext {
2. /X B K B T AE ServletContext HFAFHUR BN 3L
o String ROOT_WEB_APPLICATION_CONTEXT_ATTRIBUTE = WebApplicationContext.class.getName() + ".ROOT
"
s cooooo
5. / /%] WebApplicationContext i, i#5E4}F] Web %4+ ServletContext
6. ServletContext getServletContext();
7. }

MR R EhE e, Spring 234 F— AN ERIA RS2, XmIWebApplicationContext - XA~ E R SCSzB/E 7 web 2 %s ke B R e a4
Mook, BRME S R NIRRT TEN T

Java {14

1. public class XmlWebApplicationContext extends AbstractRefreshableWebApplicationContext {

2

3 /** XA web FREAH RO EAR R, FIRAE A ERIARIAR L 3C bean 5 SUAF B RIAFTRAL E */

4, public static final String DEFAULT_CONFIG_LOCATION = "/WEB-INF/applicationContext.xml";

5 public static final String DEFAULT_CONFIG_LOCATION_PREFIX = "/WEB-INF/";

6 public static final String DEFAULT_CONFIG_LOCATION_SUFFIX = ".xml";

7

8 /1 BATNFE R T K] loadBeanDefinition, MiAKATHIIIN T0C AEFHI M —4F, XM TREAEAAH) refres
h () A A 5l

9. protected void loadBeanDefinitions(DefaultListableBeanFactory beanFactory) throws IOExceptio
n {

10. //%}F XmlWebApplicationContext, 244 {# FI [/& XmlBeanDefinitionReader KX} bean 5& A5 BRI Ti#
Hr

11. XmlBeanDefinitionReader beanDefinitionReader = new XmlBeanDefinitionReader(beanFactory);

12.

13. beanDefinitionReader.setResourcelLoader(this);

14. beanDefinitionReader.setEntityResolver(new ResourceEntityResolver(this));

15.

16. initBeanDefinitionReader(beanDefinitionReader);

17. loadBeanDefinitions(beanDefinitionReader);

18. }

19.

20. protected void initBeanDefinitionReader(XmlBeanDefinitionReader beanDefinitionReader) {

http://jiwenke-spring.blogspot.com/

21. }

22. //1#iffl Xm1BeanDefinitionReader ki A bean & X {5 B

23. protected void loadBeanDefinitions(XmlBeanDefinitionReader reader) throws BeansException, IOExc
eption {

24, String[] configlLocations = getConfiglLocations();

25. if (configlLocations != null) {

26. for (int i = 9; i < configlLocations.length; i++) {

27. reader.loadBeanDefinitions(configlLocations[i]);

28. }

29. }

30. }

31. / /XIS bean € X5 B E, BRIAMIHL A /& /WEB-INF/applicationContext.xml

32. protected String[] getDefaultConfiglLocations() {

33. if (getNamespace() != null) {

34. return new String[] {DEFAULT_CONFIG_LOCATION_PREFIX + getNamespace() + DEFAULT_CONFIG_L
OCATION_SUFFIX};

35. }

36. else {

37. return new String[] {DEFAULT_CONFIG_LOCATION};

38. }

39. }

40. }

X J—> Spring W (1) web N R, W LLE IS {H A Spring ARG B K45 2 7F web AR T B BN SN N AR B3
(WebApplicationContext),Spring] ContextLoader &4 x4 AEfIZE, FRATATLIEH ContextLoaderServlet B #
ContextLoaderListener 1) 5 3 2 A () Serviet k52451 4k Spring IOC 284 - NATASH WA AR MBS, X2 i1l
FHTFREEX AN F) Serviet 783337 FE i) Serlvet fii 4 . HANE & ContextLoaderSevlet it /2 ContextLoaderListener #iifdi] ContextLoader
K5 s it WebApplicationContext (1474646 T4F . iX/> ContextLoder il {4 /& Spring Web N H 2 1E Web Z52% 71 {1 %% #% booter.
LHRIX L Serviet AR SE A FRA T A B web 7585 i 3 R 75 SR BA T A DS 5E o
T FATIEH ContextLoaderListener 15 A% N Z$7E—ANPEN 04T, IX 4 Serviet F MU 2% 2 AR R SCHEER N R Ty, 2398/ Spring
web NN E NS AN s AINBGE R RATAT LG, 556 Servlet Fif:rh45 21 ServletContext, #AJ5 nJ LAz 3 e & 4 1117
web.xml [%A JE P, 485 ContextLoder SZ41k, WebApplicationContext J-5¢ B L 2 AT EALAE IR B F 30, 243X AME B R
WRNE, Egie 2 web W FHFEF 1 ServletContext . T4 75 2235 i) i% ApplicationContext 113 H 2 A S AT LA
WebApplicationContextUtils 2 [r1# & J7 ik 45 5]
Java fU15

1. WebApplicationContext getWebApplicationContext(ServletContext sc)

A Tomcat 124 Serviet %8s 1, T2 B AR BR:
1.Tomcat Az F 2 web.xml HiZEURZIZ 4L, 7 web.xml H 3847175 2%} ContextLoaderListener JEATHACE, %I T-7E web NH J5 3]
A 4275 ContextLoaderListener H (#1464 5553 : M Spring MVC %, Sk EAE web Z8gsrhdid 17— & 5K I0C 224, rhqE
ContextLoader "' # A\ 1) IOC % #AF A LR 3CiiA7/E T ServietContext .
Java fU15
/X HUAR R S AT IR A
public void contextInitialized(ServletContextEvent event) {
/ /X B AT E) ContextLoader

this.contextLoader = createContextLoader();

2 w N R

B

/ /X EAFH] ContextLoader XfH [N SCHEAT# AW LA
this.contextLoader.initWebApplicationContext(event.getServletContext());

i ContextLoader & 37 AR b T SCK R, A 17T LLYE ContextLoader 1 %1
Java A5

1
2
BE
4

O 00 N o U

11.
12.
13.
14.

15.

16.
17.
18.
15)
20.
21.
22.
23.
24.

public WebApplicationContext initWebApplicationContext(ServletContext servletContext)

throws IllegalStateException, BeansException {
[IXBEFEERARCETE ServletContext AR BN 3C, WA BTN O AN, BUE R E U A .
if (servletContext.getAttribute(WebApplicationContext.ROOT_WEB_APPLICATION_CONTEXT_ATTRIBUTE) !

= null) {

//EAEP T

try {
[/ ERIAM N R RS

ApplicationContext parent = loadParentContext(servletContext);

/X BAIHR E R SO AN 1 R SR HE e £ F)] ServletContext 12, v X HLA# 1) ServletContex

t R PR

//ROOT_WEB_APPLICATION_CONTEXT_ATTRIBUTE, LAJ5 [¥1 1Y H AR A ARH XA Ji MR I AFAR | F3Ci - AEfEER

HE BRI TR

this.context = createWebApplicationContext(servletContext, parent);
servletContext.setAttribute(
WebApplicationContext.ROOT_WEB_APPLICATION_CONTEXT_ATTRIBUTE, this.context);

AR BRSO B R SO S R I ACRY, H g TAE web.xml HE XS5 locatorFactorySelector, 32— ANl kS
Java {005

1
2
3
4.
5
6

protected ApplicationContext loadParentContext(ServletContext servletContext)

M);

throws BeansException {

ApplicationContext parentContext = null;

String locatorFactorySelector = servletContext.getInitParameter (LOCATOR_FACTORY_SELECTOR_PARA

String parentContextKey = servletContext.getInitParameter(LOCATOR_FACTORY_KEY_PARAM);

if (locatorFactorySelector != null) {

10. BeanFactoryLocator locator = ContextSingletonBeanFactorylLocator.getInstance(locatorFactoryS

elector);
dilec coococoooo
12. V& S T o N T
1) this.parentContextRef = locator.useBeanFactory(parentContextKey);
14. //IE AT R LRSS TR
15. parentContext = (ApplicationContext) this.parentContextRef.getFactory();
16. }
17.
18. return parentContext;
19. }

AR BRSO TR CLE, BN BT SO A R
Java {05

1. protected WebApplicationContext createWebApplicationContext(

2. ServletContext servletContext, ApplicationContext parent) throws BeansException {
3. / /3% HL T A E BATT R AR WebApplication fZRHY, t7E web.xml HHC 1) contextClass HHCE S AT LAvk &

P 1T BN A KK ApplicationContext,

4. / /ISR A T ERIA TR o

5q Class contextClass = determineContextClass(servletContext);

®c ocooococoooo

7. [/X B ETR SR A gt

8. ConfigurableWebApplicationContext wac =

9. (ConfigurableWebApplicationContext) BeanUtils.instantiateClass(contextClass);
10. /73X B A R SCHT ServletContext B 5| HI B R e

11. wac.setParent(parent);

12. wac.setServletContext(servletContext);

13

14. //IZFN web . xml FHAFH R KV LS 2

15. String configlocation = servletContext.getInitParameter (CONFIG_LOCATION_PARAM);
16. if (configlLocation != null) {

17. wac.setConfiglLocations(StringUtils.tokenizeToStringArray(configlLocation,
18. ConfigurableWebApplicationContext.CONFIG_LOCATION_DELIMITERS));

19. }

20. / /X% WebApplicationContext HATHIUGL, FRATE 2] T KN refresh i .

21. wac.refresh();

22. return wac;

23. }

WIUHAAR ApplicationContext J& 44 47 i 31 SevletContext H 2 LLJG Xt @ T — AN RIS FEA N L T30 MR ET e
1% LLJ5 1) DispatcherServlet #1454k [CLISHEAE & 1 2 ApplicationContext 142 _EF 3. XANEx) DispatcherServlet 47347 (1) 5 3%
T LB E 2.

3.58 X} ContextLoaderListener f#I4Hk LIS, Tomcat JFUh¥I4h 1k DispatchServiet, - EidfFHAT7E web.xml s AN K FRHT T
& X . DispatcherServlet £:7: 7. [L1 ApplicationContext, [/ I @ 373X 4> [L _E F S0 IRHBE2s M ServietContext 453 2 _E T SCHE
RS ARE I H O E N SCE TG, SRS A73 ServietContext H &t LUERERFIEH .

nJ LA DispatchServlet (#4525 FrameworkServlet [5 o & 2K S WI4A 10 S 72 , #4- ApplicationContext 161 gl i #2 F11 ContextLoder
Bl 3 FRAH 2B

Java X4
1. protected final void initServletBean() throws ServletException, BeansException {
Zo ocooccoooo
3 try {
4 /XX BTN ORISR L R
Bq this.webApplicationContext = initWebApplicationContext();
6 [ITESERON ER SCHRIMIA A RS 5, Al bean T E5 B @E 7 MVC HESE () &4 E 20 ##
7 initFrameworkServlet();
8 }
® ocooooooo

10. }

%} initWebApplicationContext() {4 H it A5 4n K -
Java Q15

1. pr‘otected WebApplicationContext initWebApplicationContext() throws BeansException {

2. X Hif H WebApplicationContextUtils #frAJSRIGRIME

3. WebApplicationContext parent = WebApplicationContextUtils.getWebApplicationContext(getServletCo
ntext());

4.

5. / /61 M TT DispatcherServlet (1) ER3C, M ERSCREAEHERINTE FrameworkServlet & XU (#): DEFAULT_CON
TEXT_CLASS = XmlWebApplicationContext.class;

6. WebApplicationContext wac = createWebApplicationContext(parent);

Zo oooococoooc

8. if (isPublishContext()) {

9. [/AEATETEENL I BRSO F ServletContext W2k, VERAHIIJEPEA EFI AT Serviet ZAHICH.

10. String attrName = getServletContextAttributeName();

11. getServletContext().setAttribute(attrName, wac);

12. }

13 return wac;

14. }

oI5 A T WebApplicationContextUtils (172577215 21 ApplicationContext:

Java fXH4
1. public static WebApplicationContext getWebApplicationContext(Ser‘vletContext sc) {
2. //ARTE B, EHA%EM ServletContext it & P44 1524 1
3. Object attr = sc.getAttr‘ibute(WebApplicationContext.ROOT_WEB_APPLICATION_CONTEXT_ATTRIBUT
E);
s ocoooooo
Bq return (WebApplicationContext) attr;
6. }
7. #RJ5GI% DispatcherServlet H O WebApplicationContext:
8. protected WebApplicationContext createWebApplicationContext(WebApplicationContext parent)
9. throws BeansException {

11.

12.
13.
14.

15.
16.
17.
18.
15)
20.
21.
22.
23.
24.
25.
26.
27.
28.

29.
30.
31.
32.
33\
34.

//iXFAFT] T BeanUtils FH$%75 5 webApplicationContext,ContextClass &Rl & X i) DEFAULT _CONTEXT

_CLASS =
//XmlWebApplicationContext.class;
ConfigurableWebApplicationContext wac =
(ConfigurableWebApplicationContext) BeanUtils.instantiateClass(getContextClass
s

/X EECEA BRI, MURLE ContextLoader MMM ER

wac.setParent(parent);

//1*% ServletContext 15| HAIAH S HIEC B AE o
wac.setServletContext(getServletContext());
wac.setServletConfig(getServletConfig());

wac.setNamespace(getNamespace());

/ /X 193] ApplicationContext it & SCAFIfr
if (getContextConfiglLocation() != null) {
wac.setConfiglLocations(
StringUtils.tokenizeToStringArray(
getContextConfiglLocation(), ConfigurableWebApplicationContext.CONFIG_LO
CATION_DELIMITERS));

}

/ /X B ApplicationContext MRS, [FIFEFHEMH refresh()
wac.refresh();

return wac;

4. #RJ5 e DispatchServlet Hix} Spring MVC FIFE B FE, 1 Je X Fe B SO 158 SOTHE TS - W XA HERAT
WebApplicationContext &g ik T, WK% DispatcherServiet 4 [O X, 1w LAFFSE M web.xml i2HL bean f{Hd & {5
R TR BRATT A R SRR xml SCAFSR A E MVC AT X, X HURI web 2RSS ARG Indkad B br O A se T, NI ALEER
W) Spring AR T4 B A A XK ZER, BATEHE MVC PRI IR

Java fU14

1
2
3
4
5o
6
7
8
9

10.

protected void initFrameworkServlet() throws ServletException, BeansException {
initMultipartResolver();
initLocaleResolver();
initThemeResolver();
initHandlerMappings();
initHandlerAdapters();
initHandlerExceptionResolvers();
initRequestToViewNameTranslator();

initViewResolvers();

}

5. 1XHE MVC [HESL s ke k T, DispatchServiet X452 3 (1) HTTP Request i#:47 43 & Ab#1 H1 doService()5e i, H &K MVC b3

FEIRAILE doDispatch() 1 5e sk, HAaFF A Command B PATHE, BB MRS, XL BEERATI#R W] LALE DispatcherServiet
AR 3]

Java X4
1. protected void doService(HttpServletRequest request, HttpServletResponse response) throws Exceptio
n{
Zo ooo0ooo
3. try {
4. doDispatch(request, response);
5. }
®oc coooooo
7. }

SERRIE sk 43 & doDispatch(request, response)sik 56 il «
Java Q15

1. protected void doDispatch(final HttpServletRequest request, HttpServletResponse response) throws Ex

ception {
2o ooooooc
e /] XJE Spring & IPATHE, HLIE T M SCFR NS N handler F1E SCHIAH G B4 .
4. HandlerExecutionChain mappedHandler = null;
Do
® ooooooc
7. try {
8. [/ BATTEE K ModelAndView 763X HLHIEL T
9. ModelAndView mv = null;
10. try {
11. processedRequest = checkMultipart(request);
12.
13 / /X T H request TS EURIMLUR O R e Ly @ 1) handler
14. mappedHandler = getHandler(processedRequest, false);
15
5 cooooo
17. /73X HIE handler RS, JRELT Command B () execute.
18. HandlerAdapter ha = getHandlerAdapter(mappedHandler.getHandler());
1) mv = ha.handle(processedRequest, response, mappedHandler.getHandler());
20.
2o coooooo
22. / /3% FURE AT F i e A P 2 AT e B
23 if (mv != null & !mv.wasCleared()) {
24, render(mv, processedRequest, response);
25. }
9% = oocoooooo
27. }

XA R MVC R STkt bean B & SCAF L 2 UUFIK view resolver,handler 1% 2625k 5D FH A ARAD 1K D BE
R L RE, IRATE BI7E web 45, ServletContext 7T LARFH — R web T3¢, M{EHEA web B XHPAFE—ME LT
KAE A HE Serviet FRFCHIAC E R, 3XAMR N30 B ContextLoader A JFBEATHILAIAT, JHT-TRATH) web [1,

DispatcherSerivet ZZ A\ FFHIEA M F L E R 303X ERSCHIAC B SORMR B3, I HIRATHAE A ServletContext HAR ¥ Servlet ¥4
FRAGR BN BATTH LS T IX AN Serviet () F R 30, {HZEAR BRS04 742 i Spring ME—1fi 2). iX4> DispactcherServiet &7 () -
T A RAIIT & Spring MVC 1 1 TOC 4588

HLARM) web 5k AEFIAE bR S0 R E T 5 LAUR i DispactcherServiet 5g i, _Efixt MVC (1M T — AN RERHER, Fiddiis
H AR SpringMVC (HEZL STIAE — AN PRI 4347 -

=+ Spring JDBC

5| H 8% http://jiwenke-spring.blogspot.com/

N1 A1 Spring IDBCAHI S SEHL,

7ESpring, JdbcTemplate 2 28 i 4 FH K12k 5 B 1 P R e VR Bt 2, (ddbeTemplate s i 7 R340 1 1 22 (R (R s 22 e A
v, beindr), SEEAS, I HAESpring™, A2 JdbcTemplate\I#i4R, L tnHibernateTemplate254% - & KiX J&Rod.Johnsonft
BT, O E X FhTemplaterb #8 2 ik [1]3 6 £ CallBack S AT HI Sk 58 DI REIY 25 7 B4 [l B 1 b sz B B il 220 & AT
Ju, W & AR SQLIE A% . AN A A Springi@ ik X Bl R B S V2 FAER G TR S USRI iR P A . —
SR I o 51 PV R B 42 2R ¥ 5 RSB, b

Java {84

JdbcTemplate = new JdbcTemplate(datasource);

1

2. jdbcTemplate.execute(new CallBack(){

3 public CallbackInterfacedoInAction(){

o cooooo

5 /7P SOAARSECE UG Spring B 3AT S Bl AC Y
6

7

FERTHT R A IR T 22 P AR IKARAD, th Spring SKAE s T 2% P R TR A8 Foe . FHERA RAAE B 7E JdbcTemplate Hr #4465
JEERESERAL AN, kA% JdbcTemplate.execute() hBil, XA J7id /& 4E JdbcTemplate Hil Hodth 75 vk M F IBE A 7 ik —, & P R
FEAE FIEA T R AT HEA) SQL i)«

Java {14
1. public Object execute(ConnectionCallback action) throws DataAccessException {
2 / 13 BAG BH PR
3 Connection con = DataSourceUtils.getConnection(getDataSource());
4 try {
5. Connection conToUse = con;
6 /1B SRR B P, T RRAE R #7575 AT datasource
7 if (this.nativeJdbcExtractor != null) {
8 // Extract native JIDBC Connection, castable to OracleConnection or the like.
9 conToUse = this.nativeJdbcExtractor.getNativeConnection(con);
10. }
11. else {
12. // Create close-suppressing Connection proxy, also preparing returned Statements.
13. conToUse = createConnectionProxy(con);
14. }
15. / /IE B R AR BRI BE 4 R J7 70, At) R R S8 CallBack 42 T
16. return action.doInConnection(conToUse);
17. }
18. catch (SQLException ex) {
19. / /AR PR E R, SCERE IR, ANt — A2 Spring FeHud) Spring R,
20. /1 EAVENIE, Spring T — M E X TAERICREREER TS S H KR FHERLT .
21. DataSourceUtils.releaseConnection(con, getDataSource());
22. con = null;

23. throw getExceptionTranslator().translate("ConnectionCallback", getSql(action), ex);

http://jiwenke-spring.blogspot.com/

24. }

25 finally {

26. 1SRN R 2 SR PR BRI

27. DataSourceUtils.releaseConnection(con, getDataSource());
28. }

29. }

%F JdbcTemplate 45 i HoAd v, il query,update,execute 25 (5281, IA11EE query():
Java Q15
1. public Object query(PreparedStatementCreator psc, final PreparedStatementSetter pss, final ResultSe

tExtractor rse)

2. throws DataAccessException {

S o0oooo0o00COO

4. //E RPN T FAT_L10F B execute () FEAT7 ik, SR TM0X R AR SEHLE Spring 378 i At A2
5. return execute(psc, new PreparedStatementCallback() {

6. public Object doInPreparedStatement(PreparedStatement ps) throws SQLException {
7. /1A A W45 AR

8. ResultSet rs = null;

9. try {

10. //IXRRE SQL 5L

11. if (pss != null) {

12. pss.setValues(ps);

13. }

14. /1 IERPATH SQL A

15 rs = ps.executeQuery();

16. ResultSet rsToUse = rs;

17. if (nativeJdbcExtractor != null) {

18. rsToUse = nativeJdbcExtractor.getNativeResultSet(rs);
19. }

20. /RIPIHER RS

21 return rse.extractData(rsToUse);

22. }

23. finally {

24. /GRS AE, W B R R execute () TREG SR IRATAE LT 43 BT 10 E BT AE: .
25. JdbcUtils.closeResultSet(rs);

26. if (pss instanceof ParameterDisposer) {

27. ((ParameterDisposer) pss).cleanupParameters();

28. }

29. }

30. }

31.)8

32. }

4 3h2% DataSourceUtils >k H SR PEIE BT B B0 R 2 T H, LhindT FRRISC PR SR 2 1 B 2 S AR e 1
Java {05

1. public static Connection doGetConnection(DataSource dataSource) throws SQLException {

2. / /AU HSCH R PR 5 B 2 45 7 T L TR A T A B

3. ConnectionHolder conHolder = (ConnectionHolder) TransactionSynchronizationManager.getResource(d
ataSource);

4. if (conHolder != null &% (conHolder.hasConnection() || conHolder.isSynchronizedWithTransaction
O A

5. conHolder.requested();

6. if (!conHolder.hasConnection()) {

7. logger.debug("Fetching resumed JDBC Connection from DataSource");

8. conHolder.setConnection(dataSource.getConnection());

9. }

10. return conHolder.getConnection();

11. }

12. [/ X BAR BT R, AR E S b I .

13. logger.debug("Fetching JIDBC Connection from DataSource");

14. Connection con = dataSource.getConnection();

15.

16. if (TransactionSynchronizationManager.isSynchronizationActive()) {

17. logger.debug("Registering transaction synchronization for JDBC Connection");

18. // Use same Connection for further JDBC actions within the transaction.

1) // Thread-bound object will get removed by synchronization at transaction completion.

20. ConnectionHolder holderToUse = conHolder;

21. if (holderToUse == null) {

22. holderToUse = new ConnectionHolder(con);

23. }

24, else {

25 holderToUse.setConnection(con);

26. }

27. holderToUse.requested();

28. TransactionSynchronizationManager.registerSynchronization(

29. new ConnectionSynchronization(holderToUse, dataSource));

30. holderToUse.setSynchronizedWithTransaction(true);

31. if (holderToUse != conHolder) {

32. TransactionSynchronizationManager.bindResource(dataSource, holderToUse);

33. }

34, }

35.

36. return con;

37. }

ABFATIL BRI DataSource X Gt BAESRIM ? IRE R FA TR 24 LT O IMTRCE : '©1F A JdbcTemplate 422 JdbcAccessor 1) & 1t
ezd

Java A4
1. public abstract class JdbcAccessor implements InitializingBean {
2o
3. /% R IR E N R IR T . */
4 private DataSource dataSource;

/** Helper to translate SQL exceptions to DataAccessExceptions */

private SQLExceptionTranslator exceptionTranslator;

O 00 N o U

private boolean lazyInit = true;

IMi%} T DataSource &2t s, Fedi1iid & X Apache Jakarta Commons DBCP =k C3P0 2L DataSource K 5¢ %, R Jm HEAE
NSO ECE A AT AT T . B 3RATE 2] JdbcTemplate &6t T VR 2 SR AR SE RO, (FUR RS A 2 IR E S, AL
AT [F) 6 S 6 T R U) B I - Spring A BAT14R4E T org.springframework.jdbe.object 1, iX HLi{u 4 T SqlQuery,SqlMappingQuery,
SqlUpdate i1 StoredProcedure %3¢, X464 Spring JDBC 1 F /7 T LA R) = 3388, R By A Ik e (g i e, FH ™ 5
A AT & 44 JdbcTemplate 1 Sk JLIEA (K4 (K 52 B

L n i3 A1 14 MappingSqlQuery Skl $di B i 81— X 54 s - BRI LS H b el 7

1.FA 135 24 7. DataSource Fl sql 157y @ S5 IX HEXT % ¥ MappingSqlQuery X%

2R G BATT 7 252 X AR #11 SqlParameter, HL AR 1) 52 L EATIZE MappingSqlQuery 11422 RdbmsOperation HH AT Lk 21 :

Java fU14

1. public void declareParameter(SqlParameter param) throws InvalidDataAccessApiUsageException {

2. /IR B2 L, W% A B TER

3. if (isCompiled()) {

4. throw new InvalidDataAccessApiUsageException("Cannot add parameters once query is compiled
")

5. }

6. / 11X B ZHUE AT P W] 5E

7. this.declaredParameters.add(param);

TMiX ™ declareParameters 437 (1) & — 513
Java £G4
1. /** List of SqlParameter objects */

2. private List declaredParameters = new LinkedList();

XANFNERAE LS compile fi R s 2 4 Af
3R I P R 5 2523 MappingSqlQuery) mapRow £ 1, K FL 1) ResultSet £l A= i 3RA 175 BERO0S 5, I FATEAAE T 7775
1, 2, 3B5hr L BATE AP T — AN A IR A I R A AR
AAEN IR, BATEEH] execute() AR BIFATH LRI LA, FIRTH)EE MW ZREEHK B THAT SQL 1K AU B kAR
RE—4i0sk, F92 EIATI execute 72422 SqlQuery R E T«
Java fh5
public List executeByNamedParam(Map paramMap, Map context) throws DataAccessException {
validateNamedParameters(paramMap);
Object[] parameters = NamedParameterUtils.buildValueArray(getSql(), paramMap);

RowMapper rowMapper = newRowMapper(parameters, context);

uu A W N R

String sqlToUse = NamedParameterUtils.substituteNamedParameters(getSql(), new MapSqlParameterSo
urce(paramMap));
6. //BATNER] T IdbcTemplate, iX HAEH] JdbcTemplate Ke5e ik £d 2) A 4 4, FrCAFRATTUE JdbcTemplate /&3
A AR

7. return getJdbcTemplate().query(newPreparedStatementCreator(sqlToUse, parameters), rowMappe
r);

8. }

FEIX HLIRATT AT LA 21 template A5 ¥0RS RN At JdbcTemplate (R G4l . @A e, Bl 2 7 F T4 ResultSet J-K 3L

(R A A R A R I SR o A3 AT T 7 2 X SQL & ARl SqIParameter - RS, 1E1E SQL AL H e s AL

BATEER T o X2 R JdbcTemplate f—ANME &6 T

Spring itk HANBUE PRI AL T 2 BRSS, thin{li) SqlUpdate 4 A RIS 504, 1§ 1] UpdatableSqlQuery 53 ResultSet, A=k
TR, WA AT RS

b gy H T % BLOB %icdi it CLOB %t k47 $cdis P #1651 1«

%} BLOB 4 (1 # il il LobHander Sk ik, ity H JdbcTemplate fil RDBMS #B 7] LA T#iAf: :

7t JdbcTemplate v, FARMHI AT LS 2% F il 7 - i DR P AR AR H 1

Java U105

1. public Object execute(String sql, PreparedStatementCallback action) throws DataAccessException {

2o return execute(new SimplePreparedStatementCreator(sql), action);

3.}

SR A X SZE PreparedStatementCallback 42 111 AbstractLobCreatingPreparedStatementCallback 1 [5] i B8 $0k 52 1k -
Java Q15

1. public final Object doInPreparedStatement(PreparedStatement ps) throws SQLException, DataAccessExce
ption {
LobCreator lobCreator = this.lobHandler.getLobCreator();
try {
[/IS MR T, BARTR B RSB
setValues(ps, lobCreator);
return new Integer(ps.executeUpdate());

}
finally {

O 00 N O U1 A W N

lobCreator.close();

=
[ay)
—

11. }
12. / /58 ST B2) Ry SE I 1 R 4
13. protected abstract void setValues(PreparedStatement ps, LobCreator lobCreator)

14. throws SQLException, DataAccessException;

MR 17 R setValues() i — M S ILINAINR Tk, TRl 5630 setValues e X ELIRIE - 75 setValues i il
lobCreator.setBlobAsBinaryStrem(). it F A1 & H {411 BLOB #:11: 7 LobCreator /& B4 58 M, FAll—Hff i DefaultLobCreator 14
BLOB #1513k 5 -
Java fh5

1. public void setBlobAsBinaryStream(

2 PreparedStatement ps, int paramIndex, InputStream binaryStream, int contentLength)

B throws SQLException {

4. / /183t IDBC K 5EAT BLOB Hif 1 #/E, X Oracle, Spring #fit T OracleLobHandler K37 #F BLOB 1k,

5 ps.setBinaryStream(paramIndex, binaryStream, contentLength);
6

ETHR))2 Z AR Spring IDBC AL 11, AT LA 2] Spring IDBC nJ LAHE Bh Bl 158 eV 2 2o i (1 #AT: o Spring X £t 2
BE R IEA MRS 28T JdbcTeamplate At i F) [l s BRI, Frbe b, SARME T2 RMDB (R34 R A B 3A T3 (R 1K
X HUE R B A TR - R IX HLA SN I Hibernate IX A1) O/R 77 %« XFiX 28 O/R J5 Z M3+, Spring i HAth A0k 58 IR %5 -
Forhit 42 #156T execute Al update J7ik 2 [AFIX)], update 77 vk iR 8] (/252 52w 1 i sk B0 H 10— AN THEG IF HA R A N S50, At
FH)2 java.sql.PreparedStatement, iy execute J5i% 2T java.sql.Statement, N3 2%, 1M HABAIR P52 520030 (014, S0
G IR EFRNIER, 1l update LG & TN, SOHRMERERAE, XS FRA T4 F N 75 2 .

V4. Spring MVC

R FATH Spring MVCHEZLAR IS 34T 4347, % webApplicationContext [AH 3¢ 43-#7 il AZ: WL LA | (1 3CRY, A Tix HLA5 5 4347 Spring Web
MVC HEZE 1) S FeATT A4 DispatcherServiet A F:
Java f0h5
//IXHEXS DispatcherServlet MAIMRIL L, MRIEH 7 AR I H 10F FIX 254> Spring MVC £ EITRINPIIARL
protected void initFrameworkServlet() throws ServletException, BeansException {
initMultipartResolver();

initLocaleResolver();

1

2

3

4

5. initThemeResolver();
6 initHandlerMappings();

7 initHandlerAdapters();

8 initHandlerExceptionResolvers();

9 initRequestToViewNameTranslator();
10. initViewResolvers();

11. }

B PR IAI%NE, X /& DispatcherSerlvet [#IMA1LILFE, ‘& E4E WebApplicationContext & 28474 (50 FHEAT Y, HEt Bk EA]
WHALE I, IOC BMNIZCLTAET, X RERATE web.xml Hic & Spring (I %, 75 %4 DispatcherServlet) load-on-startup
)& PERC 2 2 IR A
BRI R, REZEME, 1% initHandlerMappings () kK& F:
Java {14

1. private void initHandlerMappings() throws BeansException {

2. if (this.detectAllHandlerMappings) {

3. // XHIRBFTEALE LR S0 XH) HandlerMapping, [A] 40 A0A THE P

4 // BEATERI—A BRSO AT LA AN 1 E—A handlerMapping, T CAFRAT HEAAT T4 31—k TLUEAT 4E 4 F S

i}

5. Map matchingBeans = BeanFactoryUtils.beansOfTypeIncludingAncestors(

6. getWebApplicationContext(), HandlerMapping.class, true, false);

7. if (!matchingBeans.isEmpty()) {

8. this.handlerMappings = new ArraylList(matchingBeans.values());

9. // XHiE order JEMEHK A} handlerMapping He#E 1ist i

10. Collections.sort(this.handlerMappings, new OrderComparator());

11. }

12. }

13. else {

14. try {

15. Object hm = getWebApplicationContext().getBean(HANDLER_MAPPING_BEAN_NAME, HandlerMappin
g.class);

16. this.handlerMappings = Collections.singletonList(hm);

17. }

18. catch (NoSuchBeanDefinitionException ex) {

19. // Ignore, we'll add a default HandlerMapping later.

20. }

21. }

22.

23. [/WURAE FTR SO B E g, R4 JRATME BRI Y BeanNameUr1HandlerMapping
24, if (this.handlerMappings == null) {

25 this.handlerMappings = getDefaultStrategies(HandlerMapping.class);
9% ooooocoooc

27. }

28. }

EAERAR BN SOAEE, ATRAS ILARATTRTTI X IOC 2548 7E web HREE v indk)44 . DispatcherServlet #15€ X T #1745 HandlerMapping
FBINZER T A —A List LA UG AT, XAME IR — AN S0 # 2 —A> handlerMapping IIRCE, 1i—#%—4> handlerMapping 7] LA
¥ — &4 URL i3k %] Spring Controller [Fme, Ebfm SimpleUrd

HandlerMaaping "l e LT —A> map SREFE X — RV BLE LR,

DisptcherServlet i iT HandlerMapping 1§75 Web [F 2 — M AT R 2, it 15 B AT4E HanderMapping H & I FIFE,
HandlerMapping - J&:—AME .

Java A5

1. public interface HandlerMapping {

2. public static final String PATH_WITHIN_HANDLER_MAPPING_ATTRIBUTE =

3. Conventions.getQualifiedAttributeName(HandlerMapping.class, "pathWithinHandlerM
apping");

4. /75265 E4Ed AN HandlerExecutionChain, iX & LAY () Command I MIAE FH, IXANATHE S [48 handler
£

Bq HandlerExecutionChain getHandler(HttpServletRequest request) throws Exception;

6. }

b P L ARSI IR S AN v, TR AN 1 VAR [& — /> HandlerExecutionChain, S fs E it — AN T4E, AR
Command #xUHIE FIREE, XANRMFH, Hie— A —A Interceptor #F1—> Controller:

Java A4
1. public class HandlerExecutionChain {
2
3 private Object handler;
4.
5 private HandlerInterceptor[] interceptors;
6
/o oooooooc
8. }

X 4% Handler Al Interceptor 75 B #4115 X HandlerMapping) F R EC & 45, Ebtnsd B AR SimpleURLHandlerMapping, i Z i sl 12
He4 URL et (677 s3I Handler A1 Interceptor, [T4 —ANsUm s 1) handlerMap, 475 B ILHC Http 174 5K) 5% 75 B4 XA
T B BB R AT HE . X ANVEMHG S REAE TOC 22 2s w41k SimpleUriHandlerMapping F B g 5 i T, 3XAELUG AT 41l A
FIE map BLIWUEE, XHEEE R bean TG BN, FIHZ BRI LR

Java fh5
1. protected void registerHandlers(Map urlMap) throws BeansException {
2 if (urlMap.isEmpty()) {
3. logger.warn("Neither 'urlMap' nor 'mappings' set on SimpleUrlHandlerMapping");
4 }
5 else {

6. / /X iEARAE SimpleUrlHandlerMapping & I A WL 0%
7. Iterator it = urlMap.keySet().iterator();

8. while (it.hasNext()) {

9. /X RS E) url

10. String url = (String) it.next();

11. /X B url 71 bean 5E SCHHEAFXT () handler
12. Object handler = urlMap.get(url);

13. // Prepend with slash if not already present.
14. if (lurl.startsWith("/")) {

15. url = "/" + url;

16. }

17. //iX B AbstractHandlerMapping H) i F2
18. registerHandler(url, handler);

19. }

20. }

21. }

1t AbstractMappingHandler H (#)3E JIHCHS «
Java fU14
1. protected void registerHandler(String urlPath, Object handler) throws BeansException, IllegalStateE

xception {

2. / /iR E M handlerMap X handler, & & & 75 CAARLE FIRER Url U o¢ &
3. Object mappedHandler = this.handlerMap.get(urlPath);

4. if (mappedHandler != null) {

D50 o0oooo000C

6. }

7o

8. /7 IRIE B bean A4 fBIYLR IR A E #E M A 45 T X handler

9. if (!this.lazyInitHandlers && handler instanceof String) {
10. String handlerName = (String) handler;

11. if (getApplicationContext().isSingleton(handlerName)) {
12. handler = getApplicationContext().getBean(handlerName);
13. }

14, }

15 / /B BRIA handler.

16. if (urlPath.equals("/*")) {

17. setDefaultHandler(handler);

18. }

19. else {

20. //48 url Al handler [RX) Y 5¢ Z K E] handlerMap H2:

21 this.handlerMap.put(urlPath, handler);

226 ocooooooo

23. }

24. }

handlerMap & #5743 [)—> HashMap, HL I st (#4717 HAR L A .

Java Q15

1. private final Map handlerMap = new HashMap();

1M SimpleUrlHandlerMapping %14 1 HandlerMapping) SE3U& X AR 1), XA getHandler ARYE 7R 464 1) 5 075 1 7 S 2 S A ik
DispatcherServlet 7 2 (1) $0474%

Java fU14
1
2
3
4
Do
6
7
8
9

10.
11.
12.
13.
14.
15.
16.
17.

public final HandlerExecutionChain getHandler(HttpServletRequest request) throws Exception {

/ /X BEARYE request IS S BTGV) handler, HAKALFEAE AbstractUrlHandlerMapping

Object handler = getHandlerInternal(request);
/T IURIEAZIR N, #6545 1) handler
if (handler == null) {
handler = this.defaultHandler;
}
/TR IR, HBINE T
if (handler == null) {
return null;
}
// W3R handler At —ANH AR handler, ALFRATEE R 1R SR
if (handler instanceof String) {
String handlerName = (String) handler;
handler = getApplicationContext().getBean(handlerName);
}
//*EB— HandlerExecutionChain, AP 7 JATTVEAC L) handler Fl5E ST HOH= 4k

utionChain T & ZIMILAEE, EFA—1A handler Fl— A+ H 4.

18.
19. }

return new HandlerExecutionChain(handler, this.adaptedInterceptors);

HA1EH R AR handler S -

Java fU14
1
2
3
4
Do
6
7
8
9

10.
11.
12.
13.
14.
15.
16.

[/ HTTP Request 1LHE RIS EEAT /b, 158 HAKKEE2ME B

String lookupPath = this.urlPathHelper.getLookupPathForRequest(request);
....... /1 N RAR B Ak

return lookupHandler(lookupPath, request);

protected Object lookupHandler(String urlPath, HttpServletRequest request) {

// HRRERS HBEGELE SimpleUrlHandlerMapping (WL &b, HilT.
Object handler = this.handlerMap.get(urlPath);
if (handler == null) {

W% AT 1HFE HandlerExec

protected Object getHandlerInternal(HttpServletRequest request) throws Exception {

// X BEAF BN map TR handler SEATULHL, M T Jre F1[1¥ Matcher JEk 58 AL AL AL EE o

String bestPathMatch = null;

for (Iterator it = this.handlerMap.keySet().iterator(); it.hasNext();) {

String registeredPath = (String) it.next();
if (this.pathMatcher.match(registeredPath, urlPath) &&

17.

18.
15)
20.
21.
22.
23.
24.
25.

26.
27.
28.
X
30.
31.
32.

(bestPathMatch == null || bestPathMatch.length() <= registeredPath.leng
th())) {
/ /X HARYE VL AL A2 R B R R) — A
handler = this.handlerMap.get(registeredPath);
bestPathMatch = registeredPath;
}
}
if (handler != null) {
exposePathWithinMapping(this.pathMatcher.extractPathWithinPattern(bestPathMatch, urlPat

h), request);

}
}
else {
exposePathWithinMapping(urlPath, request);
}
//

return handler;

BATTLLE R, HE7E handlerMap iX 4~ HashMap H 4k, 48R B BT, WRHAR, BEF LA LG8 LT Match Pattern 1)

I

AT RGNS # HnaderMapping IR 2 nf LU I ANT 5B AT RC B, b il A Bl IX 1L

IXFEAT LU 2 M 2454 HandlerMapping (4)AG R - (A, BRATHRAE 2 T A RAKE handler WU & EFERAFAEAI B IR IN - X

A

-/~ ExecutionChain #4734 13 2] 1¥) handler F1#E & X bean iS5 E LI Interceptors.

ik 3411513 DispatcherServiet, #4atb s LlG, SEBRIXT web %3k & 7E doService() /i AL BRI, F&AI1%13E DispatcherServiet X
— AN) Serviet:

Java {15

dho

O 00 N OO0 U1 b W N

(RS
R ©®

12.
13.
14.
15.
16.
17.

protected void doService(HttpServletRequest request, HttpServletResponse response) throws Exceptio
n{
/ /X RAE B PEAE BT IR A7
Map attributesSnapshot = null;
if (WebUtils.isIncludeRequest(request)) {
logger.debug("Taking snapshot of request attributes before include");
attributesSnapshot = new HashMap();
Enumeration attrNames = request.getAttributeNames();
while (attrNames.hasMoreElements()) {
String attrName = (String) attrNames.nextElement();
if (this.cleanupAfterInclude || attrName.startsWith(DispatcherServlet.class.getName

O A
attributesSnapshot.put(attrName, request.getAttribute(attrName));

// Make framework objects available to handlers and view objects.

18. request.setAttribute(WEB_APPLICATION_CONTEXT_ATTRIBUTE, getWebApplicationContext());

19. request.setAttribute (LOCALE_RESOLVER_ATTRIBUTE, this.localeResolver);
20. request.setAttribute(THEME_RESOLVER_ATTRIBUTE, this.themeResolver);
21. request.setAttribute (THEME_SOURCE_ATTRIBUTE, getThemeSource());

22.

23. try {

24. / /X BAFSERRI AL IR

25 doDispatch(request, response);

26. }

27. finally {

28. // Restore the original attribute snapshot, in case of an include.
29. if (attributesSnapshot != null) {

30. restoreAttributesAfterInclude(request, attributesSnapshot);
31. }

32. }

33. }

BATER], TR HS2hr - 21k doDispatch() 52 it - XA ITIEIR K, HE I PR 8] 7.
Java Y

1. protected void doDispatch(final HttpServletRequest request, HttpServletResponse response) throws Ex

ception {
2o HttpServletRequest processedRequest = request;
3. //i% &M handlerMapping F143 3| (KT 4%
4. HandlerExecutionChain mappedHandler = null;
Bq int interceptorIndex = -1;
6.
/o oooooooc
8. try {
) /1 3A TR ModelAndView THIAHIEL T .
10. ModelAndView mv = null;
11. try {
12. processedRequest = checkMultipart(request);
13
14. /] XRFAIGE] handler (il Fe
15 mappedHandler = getHandler(processedRequest, false);
16. if (mappedHandler == null || mappedHandler.getHandler() == null) {
17. noHandlerFound(processedRequest, response);
18. return;
19. }
20.
21. // XEBCHATEE P H Interceptor HEHTHTALFE
22. if (mappedHandler.getInterceptors() != null) {
23 for (int i = 0; i < mappedHandler.getInterceptors().length; i++) {
24, HandlerInterceptor interceptor = mappedHandler.getInterceptors()[i];
25 if (!interceptor.preHandle(processedRequest, response, mappedHandler.getHandler

ON A

26. triggerAfterCompletion(mappedHandler, interceptorIndex, processedRequest, r

esponse, null);

27. return;

28. }

29. interceptorIndex = ij;

30. }

31. }

32.

33. //7EHAT handler 217, F HandlerAdapter Jifi#s—F handler H&7AEME: JEAERL Spring MIZRGS
.

34. HandlerAdapter ha = getHandlerAdapter(mappedHandler.getHandler());

35. mv = ha.handle(processedRequest, response, mappedHandler.getHandler());

36.

37. // EHBICHPATEE K Interceptor BHTJE AL

38. if (mappedHandler.getInterceptors() != null) {

39. for (int i = mappedHandler.getInterceptors().length - 1; i >= 0; i--) {

40. HandlerInterceptor interceptor = mappedHandler.getInterceptors()[i];

41. interceptor.postHandle(processedRequest, response, mappedHandler.getHandler
(), mv);

42. }

43, }

44, }

45,

3% = ocooocoooo

47.

48. // Did the handler return a view to render?

49. / /3K BRI A AT b HE

50. if (mv != null & !mv.wasCleared()) {

51. render(mv, processedRequest, response);

52. }

5830 = ocoocoooo

54. }

TA VR A A BRI MVC HELL B35 A DA AL, EL i (T 75 201 http 5 RN B BIBATBE, SRERAT AT HE R B SE R AR A i B 3
I %
S BFEEE Command X%, A1k #imiE Handler - T2 getHandler (1/Xfi5:
Java fXH4
1. protected HandlerExecutionChain getHandler(HttpServletRequest request, boolean cache) throws Except
ion {
2 //1E ServletContext WA HUTEE - SEBr L5 —IRARIEMNE, AT EILAE ServletContext BT T 2547
3 HandlerkExecutionChain handler =
4 (HandlerExecutionChain) request.getAttribute(HANDLER_EXECUTION_CHAIN_ATTRIBUTE);
5. if (handler != null) {
6 if (!cache) {
7 request.removeAttribute (HANDLER_EXECUTION_CHAIN_ATTRIBUTE);
8

10.
11.
12.
13.
14.
15.
16.
17.
18.
15)
20.
21.
22.
23.
24.
25.
26.
27.

return handler;
}
/ /X BB IEAR K I E initHandlerMapping FH#E A R XA 1 HandlerMapping
Iterator it = this.handlerMappings.iterator();
while (it.hasNext()) {
HandlerMapping hm = (HandlerMapping) it.next();
/ /X IS FREAS handler [Kid 2, fE5F> HandlerMapping 7 & 37 (1) it 5 e BEA T4 R 45 3135 K XY (1) handler
handler = hm.getHandler(request);

/ /XG4 handler 723 ServletContext H £ 1F
if (handler != null) {
if (cache) {
request.setAttribute (HANDLER_EXECUTION_CHAIN_ATTRIBUTE, handler);
}

return handler;

}

return null;

W HAE ServietContext H a] LAEXAS handler M B4R AT, SZhr_ XA handler J& 280k T L RACBEMI S B - BB 55— AEIX 4 handler
8% ServletContext H 2

WRAE ServletContext 4k A3 handler, It id #74 f) handlerMapping 42—, 4115 21E S S /T A RIT A 1
handlerMapping, B 24 7] BAE A il —AS, AbATITE 52 SCIRISHgAR n] LR 2 67, B B4R 2158 — A4, SR)5 IR [E]. %6483 —> handlerMapping,
SR i XA handlerMapping il AMRATHE, HLIEL P T 5 24H0 Handler FIFRAT5E SUIY—£Hi Y Interceptor. FAARIRATIT LIS %
LT) SimpleUrlHandlerMapping #4CHE 43 #4038 getHandler J& /EFES2]—4 HandlerExecutionChain).

3% HandlerExecutionChain LUJ5, A1l HandlerAdapter %JiX 4~ Handler [&y2: P HEAT I 7 -

Java {005

dlo
2
3
4
5o
6
7
8
9

protected HandlerAdapter getHandlerAdapter(Object handler) throws ServletException {

Iterator it = this.handlerAdapters.iterator();
while (it.hasNext()) {
[/ RIFES FEA T adapter #EAT UL
HandlerAdapter ha = (HandlerAdapter) it.next();
if (ha.supports(handler)) {

return ha;

iR, BATIANIEIXAS handler S ANE—> Controller #1528, Lbanx+ H4& % HandlerAdapter -
SimpleControllerHandlerAdapter:

Java £G4

1. public class SimpleControllerHandlerAdapter implements HandlerAdapter {

2o

public boolean supports(Object handler) {

return (handler instanceof Controller);

N o v bW
—

faf L W — 1 handler ARSI T Controller #: M. IX B ARIL T — Bt} it & SCAEHEAT 1 AR MIHLH]
ik 34717 715 DispatcherServlet & 24CH :
Java Q15

1. mv = ha.handle(processedRequest, response, mappedHandler.getHandler());

XA handle (A T M1 24 F Command #2X HL f) Command.execute(); BELT 244 (113 [0]— > ModelAndView, T fisk & —4
X View BEAT AL LK) -
Java Q15

1. if (mv != null && !mv.wasCleared()) {

2. render(mv, processedRequest, response);
3.}

2 render 7%

Java fi5

protected void render(ModelAndView mv, HttpServletRequest request, HttpServletResponse response)

throws Exception {response.setlLocale(locale);

1
2
3
4 View view = null;

5. / /X AEERN AL B8 2] ModelAndView H1 2,
6 if (!mv.hasView()) {

7

8

9

mv.setViewName (getDefaultViewName(request));

}
10. if (mv.isReference()) {
11. /7 XL 4 AT AT
12. view = resolveViewName(mv.getViewName(), mv.getModelInternal(), locale, request);
18 ocooocooc
14. }
15. else {
16. // W BEAE ModelAndView H A HEME T View X4, EIRA TS HEALH] .
17. view = mv.getView();
18 ocoocoooo
19. }
20.
21. /7B BARI) view MR LG, FATHERANALE .
22. view.render(mv.getModelInternal(), request, response);
23. }

MR AT 2 567E ModelAndView 1 T FRALIE A2 4 4%, D R ERAS RIS H s ROPL I, S SR AEs R BIRL I 44 7, It oxl

BEAT AR AT 21 S B (1 75 B0 (KRR PRI 6 52 o 34T — ol fE 2 7 ModelAndView L4403 T 92br AL B XT %, XSO 452 w] DL,
AT

ANEER, B3 MEXN SR UG, 38 AL R S 1) render K56 i i) Bosid 4, AT LLR B HAKR IstiView & EAE SR,
FA1#E IstiView 5422 AbstractView Hi#k %] render J5i%:

Java fU14

1. public void render(Map model, HttpServletRequest request, HttpServletResponse response) throws Exce

ption {

Zo ooo0ooo

3. /] RHIEPTA FAHRAE B — A Map B

4. Map mergedModel = new HashMap(this.staticAttributes.size() + (model != null ? model.size
0 :9));

Bq mergedModel.putAll(this.staticAttributes);

6. if (model != null) {

7o mergedModel.putAll(model);

8. }

O

10. // Expose RequestContext?

11. if (this.requestContextAttribute != null) {

12. mergedModel.put(this.requestContextAttribute, createRequestContext(request, mergedMode
1));

13. }

14. / /12 S B) R LA Bt A 1 0 T

15. renderMergedOutputModel (mergedModel, request, response);

16. }

WRERRTERE T, JSiETa KSR 47345 13— Map - mergedModel H, 4%)51 renderMergedOutputModel(); x4
renderMergedOutputModel J&—/M&t 7772, A SEILTE InternalResourceView tH i IstiView f45225%:
Java A5

1. protected void renderMergedOutputModel(

2 Map model, HttpServletRequest request, HttpServletResponse response) throws Exception {
3

4 // Expose the model object as request attributes.

5q exposeModelAsRequestAttributes(model, request);

6

7 // Expose helpers as request attributes, if any.

8 exposeHelpers(request);

9

10. // XHAEF| InternalResource 5& S A #E % A%

11. String dispatcherPath = prepareForRendering(request, response);

12.

13. / /X BT SR B TR 2 IR A B B U R A b 2

14. RequestDispatcher rd = request.getRequestDispatcher(dispatcherPath);

15. if (rd == null) {

16. throw new ServletException(

17. "Could not get RequestDispatcher for [" + getUrl() + "]: check that this file exist

s within your WAR");

18. }
19. ...,

B RSP T AL P, exposeModelAsRequestAttributes J& 7F AbstractView A SZHLI, XA ModelAndView A (15 54 ¥4
XA request ZdE S48 F ServietContext 2423, XAFIEAMBIR AR #iilid ServletContext £ & A BIIL M T -
Java Q15

1. protected void exposeModelAsRequestAttributes(Map model, HttpServletRequest request) throws Excepti

on {
2. Iterator it = model.entrySet().iterator();
3. while (it.hasNext()) {
4. Map.Entry entry = (Map.Entry) it.next();
5 ooooo000000
6. String modelName = (String) entry.getKey();
7. Object modelValue = entry.getValue();
8. if (modelvValue != null) {
9. request.setAttribute(modelName, modelValue);
1% = occoocooooooo
11. }
12 else {
13 request.removeAttribute(modelName);
e, oooooo0
15. }
16. }
17. }

L FRAT R BN H P AL B 43 119 exposeHelper(); 1% & — AR 777k, HSEILLE IstiView HSEH:

Java U105
1. public class JstlView extends InternalResourceView {
2
3 private MessageSource jstlAwareMessageSource;
4
5o
6 protected void initApplicationContext() {
7 super.initApplicationContext();
8 this.jstlAwareMessageSource =
9 Jstlutils.getJstlAwareMessageSource(getServletContext(), getApplicationContext
)
10. }
11.
12. protected void exposeHelpers(HttpServletRequest request) throws Exception {
13. JstlUtils.exposelLocalizationContext(request, this.jstlAwareMessageSource);
14. }
15.
16. }

7E IstiUtils €055 10k 1 Hefl i 35 st Rk i Zodl AL BN B

AR ? FRATTIAEALEWE L T 2 mfrn], FRATTRIN5E A5 MVC +F View [¥) render, %FT InternalResourceView [f] render idf£Lk
B B PR SR R — N UR R T E AL B, T AR 45 3 S B view | internalResource BxA%, SRR BB RS 2. EREH)
UG I B A e e st 1

Java 1R
1. protected String prepareForRendering(HttpServletRequest request, HttpServletResponse response)
2 throws Exception {
BE
4 return getUrl();

XA url e LA e 2 FRATIAE View FHICHARAD B $e2, sEBr b, fibfF ViewRosolve It 4 % T, 7E UrlBasedViewResolver
W
Java Y

1. protected AbstractUrlBasedView buildView(String viewName) throws Exception {

2o AbstractUrlBasedView view = (AbstractUrlBasedView) BeanUtils.instantiateClass(getViewClass
s

3. view.setUrl(getPrefix() + viewName + getSuffix());

4. String contentType = getContentType();

5. if (contentType != null) {

6. view.setContentType(contentType);

7. }

8. view.setRequestContextAttribute(getRequestContextAttribute());

9. view.setAttributesMap(getAttributesMap());

10. return view;

11. }

IXHLR AR View 3T, A SRR AL url R Al — 280 view AHOCIR S E G E I T .
HFIEA™ ViewResolve A4 G INE ? #E0E, FRATIXFE X (A2 DispatcherServiet 1 235 %& %17, 7T DispatcherServiet .
Java Q15

1 protected void render(ModelAndView mv, HttpServletRequest request, HttpServletResponse response)
2 throws Exception {

3

s ocooooooo0

5. View view = null;

6

7 /] XRBREMEL ABNR LT

8 if (!mv.hasvView()) {

9 mv.setViewName (getDefaultViewName(request));

10. }

11.

12. if (mv.isReference()) {

13. /X BRI A4 AT, AEAR AT O I A P AR AR 5 A S B 7 ZE AL B B

14. view = resolveViewName(mv.getViewName(), mv.getModelInternal(), locale, request);
i cooooocoooo

16. }

1o ooocooo

18. }

T T S 6 A0 P 4 AT AT) LA R
Java {05

aho

O 00 N O U b W N

T O G)
w N RO

protected View resolveViewName(String viewName, Map model, Locale locale, HttpServletRequest reques

t)

throws Exception {
/1 3AAT AT BEAS 1E AR R A 2%
for (Iterator it = this.viewResolvers.iterator(); it.hasNext();) {
ViewResolver viewResolver = (ViewResolver) it.next();
/ 1 I& FUEAL B AT s 2L AT AT O A AL I B A
View view = viewResolver.resolveViewName(viewName, locale);
if (view != null) {

return view;

}

return null;

X HLR A H AT ViewResolver STHRLEI & T3 TENT - BR T SRAEMAENT 24, S ICARAE T B R AR e T BATT S b 75 (R R 3 42
HA&¥) viewResolver 7E bean 52 X A REAT E X [RIBTEE initViewResolver() 77 v - # W46 1k 31 viewResolver A5 e, BA TG H HARM
InternalResourceViewResolver & EFE X4 K 2 34T AL B IF A V LIRS 01 % resolveViewName (1) F AR 71
AbstractCachingViewResolver ,

Java {005

1
2
BE
4

O 00 N o wun

11.
12.
13.
14.
15.
16.
17.
18.
118
20.
21.
22.

public View resolveViewName(String viewName, Locale locale) throws Exception {

[T EAF W, TRE TR AL
if (!isCache()) {
logger.warn("View caching is SWITCHED OFF -- DEVELOPMENT SETTING ONLY: This can severely im

pair performance");

return createView(viewName, locale);

}
else {
Object cacheKey = getCacheKey(viewName, locale);
// No synchronization, as we can live with occasional double caching.
synchronized (this.viewCache) {
/X BATIREAT B AL 5
View view = (View) this.viewCache.get(cacheKey);
if (view == null) {
/I RAEGAF PR E], B — DN IHE R IR I 247 &
view = createView(viewName, locale);
this.viewCache.put(cacheKey, view);
}
return view;
}
}

KTFiX L6 createView(),loadView(),buildView() 155 &, BAIEFE Eclipse HL.1 call hiearchy
SR G TATTIRI 2] view.render P 5g BB (i &%) httpResponse 15 N, HLln7E AbstractExcelView Hif#y 52 8 :
Java X4
protected final void renderMergedOutputModel(
Map model, HttpServletRequest request, HttpServletResponse response) throws Exception {

// response.setContentLength(workbook.getBytes().length);

ServletOutputStream out = response.getOutputStream();
workbook.write(out);

1
2
3
4
5o response.setContentType(getContentType());
6
7
8 out.flush();

9

IXRERANBATRUTH 1) 43 BT — B >k T :DispatcherServiet 75 fif #7 ¥4] 44 1) I s AR 488 225Kk AR B T LRI 4, B 4ETE InternalResourceView
AT B url FHAD % F A0 HTTP response AHOCH J& MEA 2 5 RFFAE AL A IR G, AR5 st EL R AL IR0 2 1) render K56
B R

Xl 34N Spring Web MVC HEZE) K BURAE, 484> MVC ¥t F2 i DispatcherServlet Sk, MVC oGS P45

fic & 2 handler WL 3¢ R FVERERIEE K 2 5075 2%t 1) handler, 7& Spring ', X J& i1 handlerMapping JB i $hAT 85k 52 i, i E
PRI O R FATTHE bean s SO E XIFAE HandlerMapping 2\ b N ST g4 ic & 4 1. #8J5 DispatcherServlet ifi H]
HandlerMapping k£ 255 W P0A T8, 55 i 30 3 W0 P R TR IABE TR 00, AR BRAT 123 o 10 A WU PR S5 A AR T OB] 44 1 A e e, 5 e
[, XL %02) HanderMapping, ViewResolver, View,Handler f) %3 W /ESZEL T MVC FILIfg .

] JavaEye SCEERALE T, SEUEHORY o BOATVES 1o ViR AL 2

F.. Spring AOP 3REX Proxy

T AIHFEF Spring [AOP (11— L8 SACHL 2 E A3 Proxy ¥, 1kIA1IA15FEH AOP Fil Spring AOP [f)— LKA &«
Advice:

W, e eSS4, 7E Sping . fih 3B fid Spring IS R HE NIBISNAAT A, Spring $RALHIE 2SR |

before advice,AfterReturningAdvice, ThrowAdvice,MethodBeforeAdvice, iX46#RE Spring AOP 5& X HI4% 2%, BARRIShESZ Bl
PR TE R
Pointcut:

YIr, e —A> advice Rz TFIRANES: &, W H B ABIMEE 78S, B, #3E4 advice 1E 4 H BRI\ —41 07
. Spring pointcut M BIRE VR T7E, AT LRS- R AE A pomtcut,Sprmg A T BRIY) SRS T AT, EEaimE R
1A V) s JdkRegexpMethodPointcut 8 i i MR IA AR kA EATILHS, Hisd 8 Abstract)ldkRegexpMethodPointcut 1 #1%}
MethodMatcher 4% 111 [#) 581K 58 B pointcut Zhfig
Java {84

public final boolean matches(Method method, Class targetClass) {
/X Rl AR A 4

nwon

1

2

3 String patt = method.getDeclaringClass().getName() + + method.getName();
4, for (int i =0; i < this.patterns.length; i++) {

5. T AT A 13 M7 144 A AT VL BE AR

6 boolean matched = matches(patt, i);

7 if (matched) {

8 for (int j = 9; j < this.excludedPatterns.length; j++) {
9 boolean excluded = matchesExclusion(patt, j);

10. if(excluded) {

11. return false;

12. }

13. }

14. return true;

15. }

16. }

17. return false;

18. }

7t JDKRegexpMethodPointcut Hid i IDK H (1 1 il ik =X L F ke 56 B pointeut [d5 24 i «

Java U104
1. protected boolean matches(String pattern, int patternIndex) {
2 Matcher matcher = this.compiledPatterns[patternIndex].matcher(pattern);
3. return matcher.matches();
4. }

Advisor:

BBRAVE AN SVE R (advice) RISV N SR BETE (pointcut) LU, RATTHE AN S0 145 Gt ok, Xt 2l anas -
advisor, & U %5 MR 5L S FH W3 %1 . Advisor [528145 : DefaultPointcutAdvisor 1t 45 #H4 & 74 advice F1 pointcut kil FA 1A & advice
F1 pointcut.

HABATH AT LB I ProxyFactoryBean SHL B A TR EEXT S M J5 AT A, #F ProxyFactoryBean 45 interceptorNames SR & £ 4
S SCHF (A3 40 4 -advisor, AR X HL) 42 - HU i interceptNames, {H SERr_L /& fEJATTAC & advisor Ty, AAARACEESEILE L. JIDK 1)

Proxy k# CGLIB 3Kk 5¢ /% [X 24 ProxyFactoryBean Jj&—~™ FactoryBean,7r ProxyFactoryBean " #4118 id getObject() rl LA H 15 242
IS
Java X4
1. public Object getObject() throws BeansException {
2 / 13X A AR SN 2%
3 initializeAdvisorChain();
4 if (isSingleton()) {
5. /IR E TR AR IY) Proxy
6 return getSingletonInstance();
7
8
9

10. / /X A T R Prototype 251K Proxy
11. return newPrototypeInstance();

12. }

13. }

WAIEF BREA A FRAB G

Java A4

1. private synchronized Object getSingletonInstance() {

2 if (this.singletonInstance == null) {

S this.targetSource = freshTargetSource();

4 if (this.autodetectInterfaces && getProxiedInterfaces().length == 0 &% !isProxyTargetClass
O {

5. [/ XEEERBEN RN

6. setInterfaces(ClassUtils.getAllInterfacesForClass(this.targetSource.getTargetClass
O

7. }

8. // Eagerly initialize the shared singleton instance.

9. super.setFrozen(this.freezeProxy);

10. /] EEIX B2 E] ProxyFactory kAL S IRATTTE K Proxy

11. this.singletonInstance = getProxy(createAopProxy());

12. // We must listen to superclass advice change events to recache the singleton

13. // instance if necessary.

14. addListener(this);

15. }

16. return this.singletonInstance;

17. }

18.

19. //fiH createAopProxy J[FI[¥] AopProxy k15 ZIARHIX 5.
20. protected Object getProxy(AopProxy aopProxy) {

21. return aopProxy.getProxy(this.beanClassLoader);
22. }

ProxyFactoryBean)42 J& AdvisedSupport, Spring 1] AopProxy % I3t AOP A [y s B 5 HE SR il HAh 354 40 B Tk AE

AdvisedSupport =i i X # [1 J5 :ok A5 2] AopProxy, 245K 1 HL 77 2115 81 AopProxyFactory 1% B - T EATE 2 Spring A4 BATTHEAEH
SEIR, SRABBIRATIIT AR IDK 5 cglib 75 2 B Al AR B KA R LN % -
Java {05

1. protected synchronized AopProxy createAopProxy() {

2 if (!this.isActive) {

3 activate();

4. }

5 return getAopProxyFactory().createAopProxy(this);
6. }

T #E ProxyConfig = F ¥ AopProxyFactory i T & X:

Java X4
1. //iXA> DefaultAopProxyFactory f& Spring H>K4:% AopProxy il 7,
2. //MERT e IDK Ml Cglib WiRRSEEL T 20,

3. private transient AopProxyFactory aopProxyFactory = new DefaultAopProxyFactory();

HA7F DefaultAopProxyFactory H & iX #£4: i AopProxy [f:
Java X4
1. public AopProxy createAopProxy(AdvisedSupport advisedSupport) throws AopConfigException {
2 /1B EAEH] cglib RSEHURIEXT 5, SRR A H AR GA R4 I SR 1%
3 if (advisedSupport.isOptimize() || advisedSupport.isProxyTargetClass() ||
4. advisedSupport.getProxiedInterfaces().length == 0) {
5. / /X BAIRT U RAAALE cglib P, BHEDUH .
6 if (!cglibAvailable) {
7 throw new AopConfigException(
8 "Cannot proxy target class because CGLIB2 is not available. " +
9

"Add CGLIB to the class path or specify proxy interfaces.");

10. }

11. // EHAFH] cglib KA Proxy, W target ASE3: LISZELIE, R4 cglib 257 () AopProxy
12. return CglibProxyFactory.createCglibProxy(advisedSupport);

13. }

14. else {

15. // IXHAFH] IDK K42 Proxy, #% 1] IDK ZEf#] AopProxy

16. return new JdkDynamicAopProxy(advisedSupport);

17. }

18. }

TR FATR AT LA 3L A AR B 6 % vT A el IDK 83 Cglib k2B ki, A1 31 JdkDynamicAopProxy 25 F1 Cglib2AopProxy #lisZHiL I &
AopProxy 4% 0, 7F JdkDynamicAopProxy S b AT 0] LA 3 Proxy & EREA L) -

Java fh5
1. public Object getProxy(ClassLoader classLoader) {
2 if (logger.isDebugEnabled()) {
3 Class targetClass = this.advised.getTargetSource().getTargetClass();
4. logger.debug("Creating JIDK dynamic proxy" +
5 (targetClass != null ? " for [" + targetClass.getName() + "]" : ""));
6 }

7. Class[] proxiedInterfaces = AopProxyUtils.completeProxiedInterfaces(this.advised);

8. findDefinedEqualsAndHashCodeMethods (proxiedInterfaces);

9. /X IRATH IDK Proxy K/ i 211 Proxy SE4]

10. return Proxy.newProxyInstance(classLoader, proxiedInterfaces, this);
11. }

IXFEF Proxy fu3% target 2 Ji, ik ProxyFactoryBean 75 2% 3L 77y)1 k4 Proxy 2# T, ProxyFactoryBean [f] getObject() /7
AR R s2kr _LJE—AN Proxy T, AT target X% 432 T . X ProxyFactoryBean iX4~1.) bean M5, HA ™ K52
BT HARN R AR S

Fll: JavaBye SCEUBUR TEH, S2iRARY . BEATIES This ol AN

75~ Spring 75 A FH 540 H

BAVEG Spring HHf 55 Ab 21 K40, {8 Spring 28 55457 75 B AR A U Aoy 2, A X i 45 b i i AOP (1 S AT S 4 2R
ARREAE Ay 7 T A [3 N BND AR o, A 73 45 A5 B A 55 AR AR o 7R IRy X TA145 4 ToC 28 4% A1 Spirng &L A 1)
FactoryBean X 45 B AT B IERCE, LCAMERRATh, BRSgon5s . Hoh e s 2Upl 2 18 e & TransactionProxyFactoryBean
eI X F4)

TEREANEAID B e, AT P LUKRECR] A 3 Spring S W X S 4 BAT X A JLANB 23

* OHE R SO G E R AR EE, X L K 252 TransactionAttributeSourceAdvisor, X & —ANlANRE, ekt E M E T Ak
B, JEEAE B TransactionAttribute H St A, i 46 Ja 14 () b BAE AR R DN s (R AR TR 5 B2 ok 1o 0] 8 PR IR A B A 26
TransactionAttributeSource H5¢ .

* QISR XA RS BRI Y AR R B2, {H Spring i1t TransactionStatus A& i AH o< 145 B

* O A IR Ak B A DA SR TR R Ze B4 FL R I S B2 T

BAT AR EARK S, 7 TransactionFactoryBean -

Java {84
1. public class TransactionProxyFactoryBean extends AbstractSingletonProxyFactoryBean
2 implements FactoryBean, BeanFactoryAware {
3. //XHEE Sspring FHEGAHITATH 1) AOP #2825, PEIEET Spring X =545 Ab BRI ACRE Sk S35 75 W] U5 45 Ab B) S 3
4 private final TransactionInterceptor transactionInterceptor = new TransactionInterceptor();
5o
6 private Pointcut pointcut;
7
8. //IXH Spring ! TransactionManager 1 A%l TransactionInterceptor 12
9 public void setTransactionManager(PlatformTransactionManager transactionManager) {
10. this.transactionInterceptor.setTransactionManager(transactionManager);
11. }
12.
13. //iXBAAE bean FUE ST)10 F 5 B H JE ME(E B3 2] TransactionInterceptor H12:
14. public void setTransactionAttributes(Properties transactionAttributes) {
15. this.transactionInterceptor.setTransactionAttributes(transactionAttributes);
16. }
17.
18, aeeeeenn. S M IR R (Rl /7 S
19.
20. //iX B AN Spring AOP X HH45 AL) Advisor
21. protected Object createMainInterceptor() {
22. this.transactionInterceptor.afterPropertiesSet();
23. if (this.pointcut != null) {
24, / /3% HUA T BRVCFR) A A
25. return new DefaultPointcutAdvisor(this.pointcut, this.transactionInterceptor);
26. }
27. else {
28. // AR bR e AP TransactionInterceptor fE 484, A ITH TransactionAttributeSourceAd

visor

29. return new TransactionAttributeSourceAdvisor(this.transactionInterceptor);
30. }

31. }

32. }

A4 W% Spring 1) TransactionInterceptor #33: A\ 2| Spring AOP H i 2 Advisor H It —# 43 We ? Bedl 15 2 7F
TransactionProxyFactoryBean 1, 1XANJ5i%7E I0C #14i4k bean fRHER AT :
Java Q15

1. public void afterPropertiesSet() {

2o ooooocoo

3 //TransactionProxyFactoryBean Zfn [{#] ProxyFactory 521 AOP 3L A ThAE .

4 ProxyFactory proxyFactory = new ProxyFactory();

Do

6 if (this.prelnterceptors != null) {

7 for (int i = 9; i < this.prelnterceptors.length; i++) {

8 proxyFactory.addAdvisor(this.advisorAdapterRegistry.wrap(this.preInterceptors[i]));

9 }

10. }

11.

12. /73X HIE Spring DINE S 13

13. / /76 PRI 488] LN DefaultPointcutAdvisor 5i# TransactionAttributeSourceAdvisor

14, /71X B Spring AbHE A H 20045 A0 FE) AOP ARTL#T iR ProxyFactory Hids, BRI advisor A TR LLZ 2% Proxy
Factory)25 AdvisedSupport()

15. [/ ERYEY— A advice HIBERR, I IXAMEERR A M CEoR A 52 FRAT T 68 T 1 45 T . 10 8) e

16. proxyFactory.addAdvisor(this.advisorAdapterRegistry.wrap(createMainInterceptor()));

17.

18. if (this.postInterceptors != null) {

19. for (int 1 = 0; i < this.postInterceptors.length; i++) {

20. proxyFactory.addAdvisor(this.advisorAdapterRegistry.wrap(this.postInterceptors[i]));

21. }

22. }

23.

24, proxyFactory.copyFrom(this);

25.

26. / /X B AOP (¥ H bR

27. TargetSource targetSource = createTargetSource(this.target);

28. proxyFactory.setTargetSource(targetSource);

29.

30. if (this.proxyInterfaces != null) {

31. proxyFactory.setInterfaces(this.proxyInterfaces);

32. }

33. else if (!isProxyTargetClass()) {

34. proxyFactory.setInterfaces(ClassUtils.getAllInterfacesForClass(targetSource.getTargetClass
O

35. }

36.

37. this.proxy = getProxy(proxyFactory);
38. }

Spring E.4E X T — transctionInterceptor 1 #2854 AOP advice 1523, 7 IOC %28+ e XA J@ v bt an
transactionManager F1345 % B (1) R ME#B 245 3 O 4 & 1Y TransactionInterceptor Al B 3474 BE . BL_E fe W T KL A) Spring AOP
e Xk FE, A pointcut Fl advice # V48 8 SCUT, [R 30 il 40 23 T 31 ProxyFactory 12 T
N ik FA1R15)] TransactionProxyFactoryBean 4 % TransactionAttributeSourceAdvisor f& /EFEE XK, IXAEIRATAS LB BAK 1 8
PEREREIEM, XEFRMHT— T2 TransactionAttributeSourceAdvisor:
Java fU14

1. public class TransactionAttributeSourceAdvisor extends AbstractPointcutAdvisor {

2 //FIHADL Advisor —HF, [RIBETE R L AOP H1 (¥ H 2] Interceptor Al Pointcut

3 //Interceptor i i{L#EK () TransactionInterceptor
4. / /1T pointeut, X B LT —ANWEEE, S0 I
5
6
7

private TransactionInterceptor transactionInterceptor;

private final TransactionAttributeSourcePointcut pointcut = new TransactionAttributeSourcePoint

cut();

8.

® ooooooooo

10. //5€ Xy PointCut 12K

11. private class TransactionAttributeSourcePointcut extends StaticMethodMatcherPointcut implem
ents Serializable {

2o ooooocoo

13. //JTEISE G SEEL, A5 T TransactionAttributeSource 2§

14. public boolean matches(Method method, Class targetClass) {

15. TransactionAttributeSource tas = getTransactionAttributeSource();

16. //iX B AL TransactionAttributeSource KX fic & J& kAT Ab B

17. return (tas != null && tas.getTransactionAttribute(method, targetClass) != null);

18. }

19. % T equal,hashcode, tostring HIfUHE

20. }

XRHAEF B SRE 2 AR AbstractFallbackTransactionAttributeSource §1 5T ELAA R B AL 4%, A 17T LU BIRP i A7
3, Leln annotation FIE FZAC & AT N HIEE EARCEKEAT X, 1L Spring H RN XS B KB AT T2 b8, X2 —A
decorator i :

Java fXH4

1. public final TransactionAttribute getTransactionAttribute(Method method, Class targetClass) {
2 [/EREE N ERARARAFS TS, WRENEAF TS TransactionAttribute

3 Object cacheKey = getCacheKey(method, targetClass);

4 Object cached = this.cache.get(cacheKey);

5. if (cached != null) {

6 if (cached == NULL_TRANSACTION_ATTRIBUTE) {

7 return null;

8 }

9 else {

10. return (TransactionAttribute) cached;

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

}

else {
/7 X HE IR T5VEN H AR S A SR SR 55 A SR b
TransactionAttribute txAtt = computeTransactionAttribute(method, targetClass);
/1R REF BRI BIEAE T, TR LEE NG P IS .
if (txAtt == null) {
this.cache.put(cacheKey, NULL_TRANSACTION_ATTRIBUTE);

this.cache.put(cacheKey, txAtt);

}
return txAtt;

WlE, FEAALPEAE computeTransactionAttribute () .

Java £G4

1
2
3
4
5o
6
7
8
9

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

private TransactionAttribute computeTransactionAttribute(Method method, Class targetClass) {

/1 IE AN A L public Jiik
if(allowPublicMethodsOnly() && !Modifier.isPublic(method.getModifiers())) {

return null;

Method specificMethod = AopUtils.getMostSpecificMethod(method, targetClass);

// First try is the method in the target class.
TransactionAttribute txAtt = findTransactionAttribute(findAllAttributes(specificMethod));
if (txAtt !'= null) {

return txAtt;

// Second try is the transaction attribute on the target class.
txAtt = findTransactionAttribute(findAllAttributes(specificMethod.getDeclaringClass()));
if (txAtt !'= null) {

return txAtt;

if (specificMethod != method) {
// Fallback is to look at the original method.
txAtt = findTransactionAttribute(findAllAttributes(method));
if (txAtt != null) {
return txAtt;

}
// Last fallback is the class of the original method.

28.
29.
30.
31.

return findTransactionAttribute(findAllAttributes(method.getDeclaringClass()));

return null;

3 — R YR BATT LLUE I findTransactionAttribute O it i A findAllAttribute()45 £ TransactionAttribute fXf 4, iR [l
2 Ul X UL IZ T RS R BRATT 75 B 45 A B T i
TESE A T L S0 4% i 21 ProxyFactory # 2 JEat b, 3RATE B HAKM G 4 AT S FHE/EH, 7E TransactionInterceptor H:

Java 5

1
2
B
4
5

(o))

10.
11.
12.

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

33.

public Object invoke(final MethodInvocation invocation) throws Throwable {
/X B H AR5
Class targetClass = (invocation.getThis() != null ? invocation.getThis().getClass()

// BAKTT LS LX) getTransactionAttribute 04T, [AAf L TransactionAttributeSource
final TransactionAttribute txAttr =

: null);

/ /3% B[R] R0 I I S e 45 3] TransactionAttribute SRy BN Y HT VAT F45 400, H] feizatt g

getTransactionAttributeSource().getTransactionAttribute(invocation.getMethod(), targetC

final String joinpointIdentification = methodIdentification(invocation.getMethod());

/ /X B RAMEH T 44 TransactionManager
if (txAttr == null || !(getTransactionManager() instanceof CallbackPreferringPlatformTransactio

nManager)) {

/] XHEEES, RO SR 1S 2 A5 S 2] TransactionInfo 12

TransactionInfo txInfo = createTransactionIfNecessary(txAttr, joinpointIdentification);

Object retVal = null;
try {
retVal = invocation.proceed();
}
catch (Throwable ex) {
// target invocation exception

completeTransactionAfterThrowing(txInfo, ex);

throw ex;
}
finally {
cleanupTransactionInfo(txInfo);
}

commitTransactionAfterReturning(txInfo);

return retvVal;

else {

// S Spring 2 X1 PlatformTransactionManager [m] S T [IEE 11, FoAr T iok 2L [o 2550 B R 45

AP, AR B G RE T 55 AR B

try {

34. Object result = ((CallbackPreferringPlatformTransactionManager) getTransactionManager

()).execute(txAttr,

35. new TransactionCallback() {

36. public Object doInTransaction(TransactionStatus status) {

37. //TAFER 75—~ TransactonInfo

38. TransactionInfo txInfo = prepareTransactionInfo(txAttr, joinpointIdenti

fication, status);
39. try {
40. return invocation.proceed();
41. }
a2. . XA E T i A SRR 5515 13 EACRY
43. })s
44, i ieeeeee.
45, }
46. }

XS K B4 A0, BT 1A LAZE TransactionAspectSupport SEIR K 2 45 & #ARID «
Java Q15
protected TransactionInfo createTransactionIfNecessary(

TransactionAttribute txAttr, final String joinpointIdentification) {

1

2

3

4 // If no name specified, apply method identification as transaction name.
5. if (txAttr != null && txAttr.getName() == null) {

6 txAttr = new DelegatingTransactionAttribute(txAttr) {

7 public String getName() {

8

9

return joinpointIdentification;

}
10. }s
11. }
12.
1) TransactionStatus status = null;
14. if (txAttr != null) {
15. //IE AT BATE S F S IE SR R, AR5 E RS RAE D55, FNHR[E TransactionInfo
16. status = getTransactionManager().getTransaction(txAttr);
17. }
18. return prepareTransactionInfo(txAttr, joinpointIdentification, status);
19. }

T 5Eilid TransactionManager 73 3 B4, HH & AR BAT T e IS &L & k8, 7E AbstractTransactionManager H145 i
AFRUERI AT RS, ARG AR S5 2 T2 HAK Y PlatformTransactionManager Sy, (HIX LA H T 68 5545 AR -
Java fXH4
1. public final TransactionStatus getTransaction(TransactionDefinition definition) throws TransactionE
xception {
2. Object transaction = doGetTransaction();

5. if (definition == null) {

6. /1RSSR BB E, FAMEH Spring BN 7 =X

7. definition = new DefaultTransactionDefinition();

8. }

O

10. if (isExistingTransaction(transaction)) {

11. // Existing transaction found -> check propagation behavior to find out how to behave.

12. return handleExistingTransaction(definition, transaction, debugEnabled);

13. }

14.

15. // Check definition settings for new transaction.

16. / /7 TR A I AT R G P T 1) = 55 5 L AL 4% P) 22 o 1t %

17. / /AR R R (K45 B R iR TransactionStatus Hik Al

18. if (definition.getTimeout() < TransactionDefinition.TIMEOUT_DEFAULT) {

19. throw new InvalidTimeoutException("Invalid transaction timeout", definition.getTimeout
)

20. }

21.

22. // No existing transaction found -> check propagation behavior to find out how to behave.

23. if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_MANDATORY) {

24, throw new IllegalTransactionStateException(

25 "Transaction propagation 'mandatory' but no existing transaction found");

26. }

27. else if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION REQUIRED ||

28. definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION REQUIRES NEW |
I

29. definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_NESTED) {

30. /X BRSO S Ty, IR R A5 B 4E RS TransactionStatus Wk, QAR K
[2 55

31. doBegin(transaction, definition);

32. boolean newSynchronization = (getTransactionSynchronization() != SYNCHRONIZATION_NEVER);

33. return newTransactionStatus(definition, transaction, true, newSynchronization, debugEnable
d, null);

34. }

35. else {

36. boolean newSynchronization = (getTransactionSynchronization() == SYNCHRONIZATION_ALWAYS);

37. return newTransactionStatus(definition, null, false, newSynchronization, debugEnabled, nul
1);

38. }

39. }

FA5 W 1 1 prepareTransactionInfo 56 i 45 B eSS, G T b 43 2UR(5 BA7 % 71 TransactionInfo i % HhBEAT e A INHEAF
SN TR s
Java fXH4

1. protected TransactionInfo prepareTransactionInfo(

2. TransactionAttribute txAttr, String joinpointIdentification, TransactionStatus status) {

TransactionInfo txInfo = new TransactionInfo(txAttr, joinpointIdentification);
if (txAttr != null) {
// R EAELE getTransaction F1#3 3/ TransactionStatus JiF] TransactionInfo Hk.,

txInfo.newTransactionStatus(status);

O 0 N OO vl b W

}
10. else {
iile ccoocoo
12. }
13.
14. /1 GRE RS BB AT As
15. txInfo.bindToThread();
16. return txInfo;
17. }

Ko QU5 IO BRI, AR5 F B LAN AR 3 55 BRACHY -

Java A4
1. protected void commitTransactionAfterReturning(TransactionInfo txInfo) {
2 if (txInfo != null & txInfo.hasTransaction()) {
3. if (logger.isDebugEnabled()) {
4 logger.debug("Invoking commit for transaction on " + txInfo.getJoinpointIdentification
s
5. }
6. this.transactionManager.commit(txInfo.getTransactionStatus());
7. }
8. }

i transactionManager XF 3145 HEAT AL, ARG SR PR E W IRHRAT 4%, BRI 454 gt i P R E
Java U4

1. protected void completeTransactionAfterThrowing(TransactionInfo txInfo, Throwable ex) {
2 if (txInfo != null && txInfo.hasTransaction()) {

3 if (txInfo.transactionAttribute.rollbackOn(ex)) {

s ocooooco

5o try {

6 this.transactionManager.rollback(txInfo.getTransactionStatus());
7 }

% = aocooocooooc

9 }

10. else {

alidle o oooooo000

12. try {

13. this.transactionManager.commit(txInfo.getTransactionStatus());
14, }

156 coooococooooo

16. }

17.

18. protected void commitTransactionAfterReturning(TransactionInfo txInfo) {

19. if (txInfo != null && txInfo.hasTransaction()) {

29 = ocooocoo

21. this.transactionManager.commit(txInfo.getTransactionStatus());
22. }

23. }

Spring #id L EAHDX transactionManager HEA7 3145 AL BEIFE AR AT T AOP B4%, FIX LIRATE B4 T J5 5 = sk 0 75 B 2 10 < 45 4k
B, Spring M T VFE TAER . WERVUE I iR s oS AL B, DR LS U A8, AT LA 25 A0 (]

Java 1R

TransactionDefinition td = new DefaultTransactionDefinition();

TransactionStatus status

try{

transactionManager.getTransaction(td);

...... /X B IRATTY 55 5
}catch (ApplicationException e) {
transactionManager.rollback(status);
throw e

}

transactionManager.commit(status);

W 00 N O U1 A W N B

FATE 20X HLAEH T BRI 45 L & DefaultTransactionDefinition, [I e G 2 304 ()3 f 45 2 TransactionStatus, 28 5 38 i %1
FH 3458 BRAS I AH OC I vE st e S L 45 Ab P

FE AP 2% b PRAR FTRE SEIL T SRAN IR, FUR TR SR AT 75 B IR Uik, 5 LR Inond Ja 1k (e AL 3, I FLAR ZEA /N R %45 31 Spring
AOP HEZE 1 ToC 7583 h il 2 .

T HFRATEI AN E 4R transactionManager - DataSourceTransactionManager K& % L i 5145 Ab B 1) 5D«

[RIF: () ad A AbstractPlatformTransactionManager i FHERR J7vk, IR SEHBAIL T 0 B AR G AHCI 454 BB IR 2%, T
commit:

Java fi5

1. public final void commit(TransactionStatus status) throws TransactionException {
Zo ooo0ooo

3 DefaultTransactionStatus defStatus = (DefaultTransactionStatus) status;
4 if (defStatus.islLocalRollbackOnly()) {

5 = oooooo

6 processRollback(defStatus);

7 return;

8 }

® ccooooo

10. processRollback(defStatus);

ililec ocoo0oo00

12. }

13.

14. processCommit(defStatus);

15. }

i 3%} TransactionStatus YR AR (AT, SRpk g FL AR 55 A0 B

Java 1R
1. private void processCommit(DefaultTransactionStatus status) throws TransactionException {
2 try {
3 boolean beforeCompletionInvoked = false;
4 try {
5. triggerBeforeCommit(status);
6 triggerBeforeCompletion(status);
7 beforeCompletionInvoked = true;
8 boolean globalRollbackOnly = false;
9 if (status.isNewTransaction() || isFailEarlyOnGlobalRollbackOnly()) {
10. globalRollbackOnly = status.isGlobalRollbackOnly();
11. }
12. if (status.hasSavepoint()) {
8% oocoooooo
14. status.releaseHeldSavepoint();
15. }
16. else if (status.isNewTransaction()) {
7o ocooooo
18. doCommit(status);
19. }
296 = ocoooooooc
21. }

IR SRR 5 vk) SE B FLA Y transactionManager SkscE, HLinfE DataSourceTransactionManager:
Java Q15

1. protected void doCommit(DefaultTransactionStatus status) {

2 / /X B3 FI4£7F TransactionInfo i 4G HIF T4

3 DataSourceTransactionObject txObject = (DataSourceTransactionObject) status.getTransaction();
4.

5. / /1 AT F 55905 (B P

6 Connection con = txObject.getConnectionHolder().getConnection();
/o oooooooc

8 try {

9 / /3% B o B P R ST 55

10. con.commit();

11. }

126 coooooo

i3, I

14.

15. protected void doRollback(DefaultTransactionStatus status) {

16. DataSourceTransactionObject txObject = (DataSourceTransactionObject) status.getTransaction();
17. Connection con = txObject.getConnectionHolder().getConnection();
18. if (status.isDebug()) {

19. logger.debug("Rolling back JIDBC transaction on Connection [" + con + "]");

20. }

21. try {

22. / /3% FLE 3 Bl P TR RV R 55

23. con.rollback();

24. }

25. catch (SQLException ex) {

26. throw new TransactionSystemException("Could not roll back JDBC transaction", ex);
27. }

28. }

BAI17 #{E DataSourceTransactionManager H i J5 it /235 45 connection S 45 R AC AN rollback. #8475 W A\ FE 45 Ab F 2 g 4% Ak
P4 Spring AOP H (N, FATTE R T —MEUF 46 Spring AOP (4511, £E Spring 7 B 2 25 45 AL PR (K Y5 AL o B Ar T) L 31«
LEMHEEFARRT& T35 B

2 ERE IR VAR RD 45 5 25 45 A BRAR A ok 5 F3 B e 11 2 45 Kb 2 e s

3. EFER TG HI# F SpringAOP AEZE,

WAL RS 45 5T 1) Spring AOP IFEAIE K% 2], B] RE 2 THIRZIILE .

il JavaBye USRS TAEE, SZIEEMRY . A1 BT AR

+. Spring AOP X+ & 3% 1A A B SE 3L

BT FA 587 T Spring AOP sz 13 21 Proxy Xf % 1id #2, FIHHAIE & 7L Spring AOP T4 a5 2 B FER R A IR, gt /& Proxy 45
FOEEREEIERR, 8 i Spring & ERE A BATHME AOP Thfel;

7£ JdkDynamicAopProxy H 4= % Proxy % % i s %«

Java f465

1. return Proxy.newProxyInstance(classLoader, proxiedInterfaces, this);

IX L) this 28060 M 1) /2 InvocationHandler %} %:,3x H. 341111 JdkDynamicAopProxy SZBIL T ixX AN, Wat 2 124 Proxy %5 16 es Bk
W%, X4~ InvocationHandler [¥) invoke J7 ik /B I s B, T I IRATE B XA 7 LIS :
Java A5

1. public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
2 MethodInvocation invocation = null;

3 Object oldProxy = null;

4 boolean setProxyContext = false;

5o

6 TargetSource targetSource = this.advised.targetSource;

7 Class targetClass = null;

8 Object target = null;

9

10. try {

11. // Try special rules for equals() method and implementation of the
12. // Advised AOP configuration interface.

13.

14. if (!this.equalsDefined && AopUtils.isEqualsMethod(method)) {

15. // What if equals throws exception!?

16. // This class implements the equals(Object) method itself.
17. return equals(args[@]) ? Boolean.TRUE : Boolean.FALSE;

18. }

19. if (!this.hashCodeDefined && AopUtils.isHashCodeMethod(method)) {
20. // This class implements the hashCode() method itself.

21. return new Integer(hashCode());

22. }

23. if (Advised.class == method.getDeclaringClass()) {

24. // service invocations on ProxyConfig with the proxy config
25. return AopUtils.invokeJoinpointUsingReflection(this.advised, method, args);
26. }

27.

28. Object retval = null;

29.

30. if (this.advised.exposeProxy) {

31. // make invocation available if necessary

32. oldProxy = AopContext.setCurrentProxy(proxy);

B setProxyContext = true;

34, }

35.
36.

37.
38.
39.
40.
41,
42,
43,
44,
45,
46.

47.
48.
49.
50.
51.
52.
53.
54.
5.

56.
57.
58.
59.
60.
61.
62.
63.

64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.

75.
76.

et,

ing

cation 2§

// May be <code>null</code>. Get as late as possible to minimize the time we "own" the targ

// in case it comes from a pool.
[/ EHGEARE HART T, 2RI HARR R AT RER A T — AL filit mli i — AN 5K JAVA XF %
target = targetSource.getTarget();
if (target != null) {
targetClass = target.getClass();

// get the interception chain for this method
/7 X ERIRAGE SCAF (A

List chain = this.advised.advisorChainFactory.getInterceptorsAndDynamicInterceptionAdvice

this.advised, proxy, method, targetClass);

// Check whether we have any advice. If we don't, we can fallback on direct
// reflective invocation of the target, and avoid creating a MethodInvocation.
/7 BURBE BoE ks, A TA T BRG] H AR IR 57
if (chain.isEmpty()) {
// We can skip creating a MethodInvocation: just invoke the target directly
// Note that the final invoker must be an InvokerInterceptor so we know it does

// nothing but a reflective operation on the target, and no hot swapping or fancy proxy

retVal = AopUtils.invokeJoinpointUsingReflection(target, method, args);
}
else {
// We need to create a method invocation...
// invocation = advised.getMethodInvocationFactory().getMethodInvocation(
// proxy, method, targetClass, target, args, chain, advised);
/] WRAEARAS BT, AT EE AR 5 A H AR S AR N 5
// XHEIEAIE— ReflectiveMethodInvocation SKSEHL, FHIIATEFHIXA ReflectiveMethodInvo

invocation = new ReflectiveMethodInvocation(

proxy, target, method, args, targetClass, chain);

// proceed to the joinpoint through the interceptor chain
// XHiERL ReflectiveMethodInvocation 3K F LR e BERIAH N 1K) H A5)7 ik

retVal = invocation.proceed();

// massage return value if necessary
if (retval != null && retVal == target && method.getReturnType().isInstance(proxy)) {
// Special case: it returned "this" and the return type of the method is type-compatibl

// Note that we can't help if the target sets

// a reference to itself in another returned object.

77. retVal = proxy;

78. }

79. return retval;

80. }

81. finally {

82. if (target != null && !targetSource.isStatic()) {
83. // must have come from TargetSource
84. targetSource.releaseTarget(target);
85. }

86.

87. if (setProxyContext) {

88. // restore old proxy

89. AopContext.setCurrentProxy(oldProxy);
90. }

a1. }

92. }

BAVEEF B %7k 0 i, X @ AopUtils 777k - Al FH SO RLEIR X B AR S 0 77 it 47/ H -
Java {05

1. public static Object invokeJoinpointUsingReflection(Object target, Method method, Object[] args)

2 throws Throwable {

3

4. // Use reflection to invoke the method.

5. // RIS PUEIAS ZIAE R 75, IF B invoke

6 try {

7 if (!Modifier.isPublic(method.getModifiers()) ||

8 IModifier.isPublic(method.getDeclaringClass().getModifiers())) {

9 method.setAccessible(true);

10. }

11. return method.invoke(target, args);

12. }

13. catch (InvocationTargetException ex) {

14. // Invoked method threw a checked exception.

15. // We must rethrow it. The client won't see the interceptor.

16. throw ex.getTargetException();

17. }

18. catch (IllegalArgumentException ex) {

19. throw new AopInvocationException("AOP configuration seems to be invalid: tried calling meth
od [" +

20. method + "] on target [" + target + "]", ex);

21. }

22. catch (IllegalAccessException ex) {

23. throw new AopInvocationException("Couldn't access method: " + method, ex);

24, }

WFREAR 2 AE) T AL 3 2 7 ReflectiveMethodInvocation HLSZHLfK :

Java X4

1. public Object proceed() throws Throwable {

2o // We start with an index of -1 and increment early.

3. /7 XTEEAA BRI, B R B R C LI 5 T, X currentInterceptorIndex [(%]
MH1E2 @

4. if (this.currentInterceptorIndex == this.interceptorsAndDynamicMethodMatchers.size()) {

5. return invokeJoinpoint();

6. }

7o

8. Object interceptorOrInterceptionAdvice =

9. this.interceptorsAndDynamicMethodMatchers.get(this.currentInterceptorIndex);

10. if (interceptorOrInterceptionAdvice instanceof InterceptorAndDynamicMethodMatcher) {

11. // Evaluate dynamic method matcher here: static part will already have

12. // been evaluated and found to match.

13. /7 XBPAFTF A, WUREEE T LTSRS B, TR 23R 1 invoke 5

14. InterceptorAndDynamicMethodMatcher dm =

15. (InterceptorAndDynamicMethodMatcher) interceptorOrInterceptionAdvice;

16. if (dm.methodMatcher.matches(this.method, this.targetClass, this.arguments)) {

17. return dm.interceptor.invoke(nextInvocation());

18. }

19. else {

20. // Dynamic matching failed.

21. // Skip this interceptor and invoke the next in the chain.

22. [/ WUREAAS TR b, TRSRAF AN RS, XA I RS BE AL B a7 5 8% kA 2410 proc
eed 7%

28 this.currentInterceptorIndex++;

24, return proceed();

25. }

26. }

27. else {

28. // It's an interceptor, so we just invoke it: The pointcut will have

298 // been evaluated statically before this object was constructed.

30. return ((MethodInterceptor) interceptorOrInterceptionAdvice).invoke(nextInvocation());

31. }

32. }

IX AT R A B DL AR PR 2 B RO E AR S D clone F)— MethodInvocation %1% 1, 1EH & M a KR AT 562 5, 24k
LA BIX N AR AR BT T M EEAT A, BatE S &AM _LIRX AN proceed:
Java {05

1
2
So
4
5

private ReflectiveMethodInvocation nextInvocation() throws CloneNotSupportedException {

ReflectiveMethodInvocation invocation = (ReflectiveMethodInvocation) clone();

invocation.currentInterceptorIndex = this.currentInterceptorIndex + 1;

invocation.parent = this;

return invocation;

X HL) nextInvocation it C4 & T 2T I FAAREE M HEAS B, A5G RI7E Interceptor H (¥ 528tk i TransactionInterceptor 5251
W
Java U105

1. public Object invoke(final MethodInvocation invocation) throws Throwable {

2. .. / /X & TransactionInterceptor A NS ALY, FoATTSLE T 020 B 555 AL J ST I A 3BT 20

3 try {

4 / /3 B0 T PR A st A T IR A AL F 1)

5. retVal = invocation.proceed();

6 }

7. .. [/ NE T RS A R 1) i A BARAY & TransactionInterceptor ffi A[F4bEE

8 else {

9 try {

10. Object result = ((CallbackPreferringPlatformTransactionManager) getTransactionManager
()).execute(txAttr,

11. new TransactionCallback() {

12. public Object doInTransaction(TransactionStatus status) {

13. //3X W TransactionInterceptor i A 5545 4k B AR HL

14. TransactionInfo txInfo = prepareTransactionInfo(txAttr, joinpointIdenti

fication, status);

15. /13X BRI B I A A AT IR AC A T, B A 2 A A kAT AL P
16. try {

17. return invocation.proceed();

18. }

9. //AANE T RS AR 1) e A BRARAY & TransactionInterceptor ffi A [F4LEE

20. }

M T 23T AT 2 T Spring AOP [K)HEACSIEL, il Spring /4145 2] Proxy, 5 FEFIHT JAVA Proxy LUK R HLHIXT HI & 2k
AHEREAT AR R

W] JavaEye SCEIRBUE TAEH, ZILERY o AR T VEA] A2

J\. Spring Iz Hibernate f¥J=Z3,

O/R THMIZ)5, itk TVr£ 8015 SR AMIIIF R . Spring NI T A& & vl LUl Spring $24E¥) O/R 7y ZE 5 J5 (% (¥4 FH 2 P s A
b TR, bt Hibernate; T4 Spring+Hibernate H11f) Spring SzEi— AN a7 B 1 514

Spring %} Hinberanate (#jfid & J& i id LocalSessionFactoryBean K 5g A, X&—~ 1) Bean f{szil, fEitds
AbstractSessionFactoryBean H:

Java f0h5
1. J*x*
2. ¥ IX/& FactoryBean w ZESUIRIIEL 5k, HEBHUS T sessionFactory [MI{H
3. ¥/
4. public Object getObject() {
5. return this.sessionFactory;
6. }

IXAMETE afterPropertySet & X :
Java {14
1. public void afterPropertiesSet() throws Exception {
2 //1%ZA~ buildSessionFactory A& il i it %15 B 742 SessionFactory [l 7
3 SessionFactory rawSf = buildSessionFactory();
4. / /X EAE T Proxy Ji ikl AN getCurrentSession HI$44E, 753IF13 45456 session
5
6

this.sessionFactory = wrapSessionFactoryIfNecessary(rawSf);

A/ F SessionFactory J& ERERIEER), XATERK, 5 T 414 Hibernate f¥) SessionFactory ¥ 1 R0 3%:
Java Q15

1. protected SessionFactory buildSessionFactory() throws Exception {

2 SessionFactory sf = null;

3

4. // Create Configuration instance.

5 Configuration config = newConfiguration();

6

7 /X PR, Fi5-HEPEEE, LobHander 3 Holder H1, iXA>Holder j&—7> ThreadLocal &t , iX FEiX 46 %% Yl
ML E T

8. if (this.dataSource != null) {

9. // Make given DataSource available for SessionFactory configuration.

10. configTimeDataSourceHolder.set(this.dataSource);

11. }

12.

13. if (this.jtaTransactionManager != null) {

14. // Make Spring-provided JTA TransactionManager available.

15. configTimeTransactionManagerHolder.set(this.jtaTransactionManager);

16. }

17.

18. if (this.lobHandler != null) {

TOR
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

32.
33.
34,
35.
36.
37.
38.
39.
40.
41,
42,
43,
44,
45,
46.
47.
48.
49,
50.
51.
52.
53,
54,
55.
56.
57.

58.
59.
60.
61.
62.
63.

// Make given LobHandler available for SessionFactory configuration.
// Do early because because mapping resource might refer to custom types.

configTimeLobHandlerHolder.set(this.lobHandler);

/71X F A Hibernate AN EMEACE, XA T Configuration ZKokihZ i Ses
try {

// Set connection release mode "on_close" as default.

// This was the case for Hibernate 3.0; Hibernate 3.1 changed

// it to "auto" (i.e. "after_statement" or "after_transaction").

// However, for Spring's resource management (in particular for

// HibernateTransactionManager), "on_close" is the better default.

config.setProperty(Environment.RELEASE_CONNECTIONS, ConnectionReleaseMode.ON_CLOSE.toString
)

if (!isExposeTransactionAwareSessionFactory()) {
// Not exposing a SessionFactory proxy with transaction-aware
// getCurrentSession() method -> set Hibernate 3.1 CurrentSessionContext
// implementation instead, providing the Spring-managed Session that way.
// Can be overridden by a custom value for corresponding Hibernate property.
config.setProperty(Environment.CURRENT_SESSION_CONTEXT_CLASS,

"org.springframework.orm.hibernate3.SpringSessionContext");

if (this.entityInterceptor != null) {
// Set given entity interceptor at SessionFactory level.

config.setInterceptor(this.entityInterceptor);

if (this.namingStrategy != null) {
// Pass given naming strategy to Hibernate Configuration.

config.setNamingStrategy(this.namingStrategy);

if (this.typeDefinitions != null) {
// Register specified Hibernate type definitions.
Mappings mappings = config.createMappings();
for (int i = 9; i < this.typeDefinitions.length; i++) {
TypeDefinitionBean typeDef = this.typeDefinitions[i];
mappings.addTypeDef(typeDef.getTypeName(), typeDef.getTypeClass(), typeDef.getParam
eters());

if (this.filterDefinitions != null) {
// Register specified Hibernate FilterDefinitions.

for (int i = 9; i < this.filterDefinitions.length; i++) {

64. config.addFilterDefinition(this.filterDefinitions[i]);

65. }

66. }

67.

68. if (this.configlocations != null) {

69. for (int 1 = 9; i < this.configlLocations.length; i++) {
70. // Load Hibernate configuration from given location.
71. config.configure(this.configlocations[i].getURL());
72. }

73. }

74.

7S if (this.hibernateProperties != null) {

76. // Add given Hibernate properties to Configuration.

77. config.addProperties(this.hibernateProperties);

78. }

79.

80. if (this.dataSource != null) {

81. boolean actuallyTransactionAware =

82. (this.useTransactionAwareDataSource || this.dataSource instanceof TransactionAw

areDataSourceProxy);

83. // Set Spring-provided DataSource as Hibernate ConnectionProvider.

84. config.setProperty(Environment.CONNECTION_PROVIDER,

85. actuallyTransactionAware ?

86. TransactionAwareDataSourceConnectionProvider.class.getName() :

87. LocalDataSourceConnectionProvider.class.getName());

88. }

89.

90. if (this.jtaTransactionManager != null) {

ChLe // Set Spring-provided JTA TransactionManager as Hibernate property.

92. config.setProperty(

93\ Environment.TRANSACTION_MANAGER_STRATEGY, LocalTransactionManagerLookup.class.g
etName());

94, }

95.

96. if (this.mappinglLocations != null) {

97. // Register given Hibernate mapping definitions, contained in resource files.

98. for (int 1 = @; i < this.mappinglLocations.length; i++) {

99. config.addInputStream(this.mappinglLocations[i].getInputStream());

100. }

101. }

102.

103. if (this.cacheableMappinglLocations != null) {

104. // Register given cacheable Hibernate mapping definitions, read from the file syste
m.

105. for (int i = 0; i < this.cacheableMappinglocations.length; i++) {

106. config.addCacheableFile(this.cacheableMappinglLocations[i].getFile());

107. }

108. }

109.

110. if (this.mappingJarLocations != null) {

111. // Register given Hibernate mapping definitions, contained in jar files.

112. for (int i = 9; i < this.mappingJarLocations.length; i++) {

113. Resource resource = this.mappinglarLocations[i];

114. config.addJar(resource.getFile());

115. }

116. }

117.

118. if (this.mappingDirectorylLocations != null) {

119. // Register all Hibernate mapping definitions in the given directories.

120. for (int i = 9; i < this.mappingDirectoryLocations.length; i++) {

121. File file = this.mappingDirectorylLocations[i].getFile();

122. if (!file.isDirectory()) {

123. throw new IllegalArgumentException(

124. "Mapping directory location [" + this.mappingDirectorylLocations
[i] +

125. "] does not denote a directory");

126. }

127. config.addDirectory(file);

128. }

129. }

130.

131. if (this.entityCacheStrategies != null) {

132. // Register cache strategies for mapped entities.

133. for (Enumeration classNames = this.entityCacheStrategies.propertyNames(); classNames.
hasMoreElements();) {

134. String className = (String) classNames.nextElement();

135. String[] strategyAndRegion =

136. StringUtils.commaDelimitedListToStringArray(this.entityCacheStrategies.ge
tProperty(className));

137. if (strategyAndRegion.length > 1) {

138. config.setCacheConcurrencyStrategy(className, strategyAndRegion[@], strategyA
ndRegion[1]);

139. }

140. else if (strategyAndRegion.length > 0) {

141. config.setCacheConcurrencyStrategy(className, strategyAndRegion[@0]);

142. }

143. }

144. }

145,

146. if (this.collectionCacheStrategies != null) {

147. // Register cache strategies for mapped collections.

148. for (Enumeration collRoles = this.collectionCacheStrategies.propertyNames(); collRole
s.hasMoreElements();) {

149. String collRole = (String) collRoles.nextElement();

150. String[] strategyAndRegion =

151. StringUtils.commaDelimitedListToStringArray(this.collectionCacheStrategie
s.getProperty(collRole));

152. if (strategyAndRegion.length > 1) {

153. config.setCollectionCacheConcurrencyStrategy(collRole, strategyAndRegion
[@0], strategyAndRegion[1]);

154. }

155. else if (strategyAndRegion.length > 0) {

156. config.setCollectionCacheConcurrencyStrategy(collRole, strategyAndRegion
(en;

157. }

158. }

159. }

160.

161. if (this.eventListeners != null) {

162. // Register specified Hibernate event listeners.

163. for (Iterator it = this.eventListeners.entrySet().iterator(); it.hasNext();) {

164. Map.Entry entry = (Map.Entry) it.next();

165. Assert.isTrue(entry.getKey() instanceof String, "Event listener key needs to be o

f type String");

166. String listenerType = (String) entry.getKey();

167. Object listenerObject = entry.getValue();

168. if (listenerObject instanceof Collection) {

169. Collection listeners = (Collection) listenerObject;

170. EventListeners listenerRegistry = config.getEventListeners();

171. Object[] listenerArray =

172. (Object[]) Array.newInstance(listenerRegistry.getListenerClassFor(lis

tenerType), listeners.size());

173. listenerArray = listeners.toArray(listenerArray);
174. config.setListeners(listenerType, listenerArray);
175. }

176. else {

177. config.setListener(listenerType, listenerObject);
178. }

179. }

180. }

181.

182. // Perform custom post-processing in subclasses.

183. postProcessConfiguration(config);

184.

185. // XH MY Configuration It & G5 SessionFactory [fIH

186. logger.info("Building new Hibernate SessionFactory");

187. this.configuration = config;

188. sf = newSessionFactory(config);

189. }

190. / /35 G AR NSRS 5 1) T IR

191. finally {

192. if (this.dataSource != null) {

193. // Reset DataSource holder.

194. configTimeDataSourceHolder.set(null);
195. }

196.

197. if (this.jtaTransactionManager != null) {
198. // Reset TransactionManager holder.
199. configTimeTransactionManagerHolder.set(null);
200. }

201.

202. if (this.lobHandler != null) {

203. // Reset LobHandler holder.

204. configTimeLobHandlerHolder.set(null);
205. }

206. }

207.

208. // Execute schema update if requested.

209. if (this.schemaUpdate) {

210. updateDatabaseSchema();

211. }

212.

213. return sf;

214. }

T B3 H org.hibernate.cfg.Configuration k15 2 7 1) SessionFactory:
Java Q15

1. protected SessionFactory newSessionFactory(Configuration config) throws HibernateException {

N

return config.buildSessionFactory();

T LAFRAT 13X HL 5 3] LocalSessionFactory KSR 21 (1) — NSz g 5N 4R)5 2E 1k SessionFactory HI17E s 4R IX L #E15 8] SessionFactory
ZJR, EHFEX session [E RLE—L AT - A T — Proxy #2=0 getCurrentSession 77T T £448
Java Q15

1. //X B 4T SessionFactory [I2EE1S 5] Proxy, SRJG4fiAN Spring i€ XIF1) getCurrentSession $2#k o
2 protected SessionFactory getTransactionAwareSessionFactoryProxy(SessionFactory target) {
3 Class sfInterface = SessionFactory.class;
4 if (target instanceof SessionFactoryImplementor) {
Bq sfInterface = SessionFactoryImplementor.class;
6 }
7 return (SessionFactory) Proxy.newProxyInstance(sfInterface.getClassLoader(),
8 new Class[] {sfInterface}, new TransactionAwareInvocationHandler(target));
9 }
PR ST T

Java fCi5

1. private static class TransactionAwareInvocationHandler implements InvocationHandler {

private final SessionFactory target;

public TransactionAwareInvocationHandler(SessionFactory target) {

this.target = target;

O 00 N OO U b W N

public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {

10. // Invocation on SessionFactory/SessionFactoryImplementor interface coming in...
11. // XHEXF getCurrentSession L TR, 58] — MRS RETHSLEE K session A4 T
12. if (method.getName().equals("getCurrentSession")) {

13. // Handle getCurrentSession method: return transactional Session, if any.
14. try {

15 return SessionFactoryUtils.doGetSession((SessionFactory) proxy, false);
16. }

17. catch (IllegalStateException ex) {

18. throw new HibernateException(ex.getMessage());

19. }

20. }

21 else if (method.getName().equals("equals")) {

22. // Only consider equal when proxies are identical.

23. return (proxy == args[@] ? Boolean.TRUE : Boolean.FALSE);

24. }

25. else if (method.getName().equals("hashCode")) {

26. // Use hashCode of SessionFactory proxy.

27. return new Integer(hashCode());

28. }

29.

30. /] XHRFTEIZITH SessionFactory [H s ik

31. try {

32. return method.invoke(this.target, args);

33, }

34. catch (InvocationTargetException ex) {

35. throw ex.getTargetException();

36. }

37. }

38. }

HAFEF getCurrentSession)58, £ SessionFactoryUtils

Java fU14
1. private static Session doGetSession(
2 SessionFactory sessionFactory, Interceptor entityInterceptor,
3 SQLExceptionTranslator jdbcExceptionTranslator, boolean allowCreate)
4. throws HibernateException, IllegalStateException {
5
6 Assert.notNull(sessionFactory, "No SessionFactory specified");

[o]

10.

11.
12.
13.
14.
15.
16.
17.
18.
15)
20.

21.
22.

23.
24.
25.

26.
27.
28.
29.
30.
31.
32.
33\
34.
35).

36.

37.
38.
39.
40.
41,
42,
43,
44,
45,
46.

/ /XA~ TransactionSynchronizationManager [f Resource /& —“> ThreadlLocal ZF &, sessionFactory /& —
AN, {H ThreadLocal & FIZk 48 & (1
//IXRERSEILT Hiberante i I ThreadLocal) session & HALH
SessionHolder sessionHolder = (SessionHolder) TransactionSynchronizationManager.getResource
(sessionFactory);
if (sessionHolder != null && !sessionHolder.isEmpty()) {
// pre-bound Hibernate Session
Session session = null;
if (TransactionSynchronizationManager.isSynchronizationActive() &&
sessionHolder.doesNotHoldNonDefaultSession()) {
// Spring transaction management is active ->
// register pre-bound Session with it for transactional flushing.
session = sessionHolder.getValidatedSession();
if (session != null && !sessionHolder.isSynchronizedWithTransaction()) {
logger.debug("Registering Spring transaction synchronization for existing Hiber
nate Session");
TransactionSynchronizationManager.registerSynchronization(
new SpringSessionSynchronization(sessionHolder, sessionFactory, jdbcExc
eptionTranslator, false));
sessionHolder.setSynchronizedwWithTransaction(true);
// Switch to FlushMode.AUTO, as we have to assume a thread-bound Session

// with FlushMode.NEVER, which needs to allow flushing within the transactio

n.
FlushMode flushMode = session.getFlushMode();
if (flushMode.lessThan(FlushMode.COMMIT) &&
ITransactionSynchronizationManager.isCurrentTransactionReadOnly()) {
session.setFlushMode(FlushMode.AUTO);
sessionHolder.setPreviousFlushMode(flushMode);
}
}
}
else {
// No Spring transaction management active -> try JTA transaction synchronizatio
n.
session = getJtaSynchronizedSession(sessionHolder, sessionFactory, jdbcExceptionTra
nslator);
}
if (session != null) {
return session;
}

}

[IIX B 4T IT—A> Session

logger.debug("Opening Hibernate Session");
Session session = (entityInterceptor != null ?

sessionFactory.openSession(entityInterceptor) : sessionFactory.openSession());

47. // Use same Session for further Hibernate actions within the transaction.

48. // Thread object will get removed by synchronization at transaction completion.

49. // $EHATIF Session Ji 3l SessionHolder, 4R 51K % ThreadLocal H i 2= 14 Fedf 2k, X4 ThreadLoca
1 J&7F TransactionSynchronizationManager JC & 411), W LI sessionFactory SKRZRHL

50. [/ R AR 4 55 A B IR AR S session I, LEAHE FlushMode B¢ 4 Never, [FAIETHE session Flgigs ik
RO K

51. if (TransactionSynchronizationManager.isSynchronizationActive()) {

52. // We're within a Spring-managed transaction, possibly from JtaTransactionManager.

53. logger.debug("Registering Spring transaction synchronization for new Hibernate Session
")

54. SessionHolder holderToUse = sessionHolder;

55. if (holderToUse == null) {

56. holderToUse = new SessionHolder(session);

57. }

58. else {

59. holderToUse.addSession(session);

60. }

61. if (TransactionSynchronizationManager.isCurrentTransactionReadOnly()) {

62. session.setFlushMode(FlushMode.NEVER);

63. }

64. TransactionSynchronizationManager.registerSynchronization(

65. new SpringSessionSynchronization(holderToUse, sessionFactory, jdbcExceptionTran

slator, true));

66. holderToUse.setSynchronizedWithTransaction(true);

67. if (holderToUse != sessionHolder) {

68. TransactionSynchronizationManager.bindResource(sessionFactory, holderToUse);

69. }

70. }

71. else {

72. // No Spring transaction management active -> try JTA transaction synchronization.

73. registerJtaSynchronization(session, sessionFactory, jdbcExceptionTranslator, sessionHol
der);

74. }

75.

76. // Check whether we are allowed to return the Session.

77. if ('allowCreate && !isSessionTransactional(session, sessionFactory)) {

78. closeSession(session);

79. throw new IllegalStateException("No Hibernate Session bound to thread, " +

80. "and configuration does not allow creation of non-transactional one here");

81. }

82.

83. return session;

84. }

X e AE Spring H ok fi A Hiberante [¥) SessionFactory LA & Session fi#E# TA4F, #EiXANEAL L, F P] Lo ik
HibernateTemplate kA Hibernate ¥ O/R ZhE, FILLRTA K —FFIX & —A execute [1[1]:

Java Q15

1. public Object execute(HibernateCallback action, boolean exposeNativeSession) throws DataAccessExcep

tion {

2. Assert.notNull(action, "Callback object must not be null");

3. / /1% LA BN & 471 Hibernate [f) Session

4. Session session = getSession();

Bq boolean existingTransaction = SessionFactoryUtils.isSessionTransactional(session, getSessionFac
tory());

6. if (existingTransaction) {

7. logger.debug("Found thread-bound Session for HibernateTemplate");

8. }

O

10. FlushMode previousFlushMode = null;

11. try {

12. previousFlushMode = applyFlushMode(session, existingTransaction);

13. enableFilters(session);

14. Session sessionToExpose = (exposeNativeSession ? session : createSessionProxy(session));

15. / /X 2RI A

16. Object result = action.doInHibernate(sessionToExpose);

17. flushIfNecessary(session, existingTransaction);

18. return result;

19. }

20. catch (HibernateException ex) {

21. throw convertHibernateAccessException(ex);

22. }

23. catch (SQLException ex) {

24, throw convertJdbcAccessException(ex);

25. }

26. catch (RuntimeException ex) {

27. // Callback code threw application exception...

28. throw ex;

29. }

30. finally {

31. [1 IRIEA R RN 45 2,

32. if (existingTransaction) {

33. logger.debug("Not closing pre-bound Hibernate Session after HibernateTemplate");

34. disableFilters(session);

35. if (previousFlushMode != null) {

36. session.setFlushMode(previousFlushMode);

37. }

38. } //45NEE Session]

39. else {

40. // Never use deferred close for an explicitly new Session.

41. if (isAlwaysUseNewSession()) {

42. SessionFactoryUtils.closeSession(session);

43. }

44, else {

45. SessionFactoryUtils.closeSessionOrRegisterDeferredClose(session, getSessionFactory
)

46. }

47. }

48. }

49. }

BATEG BFAREIXS R Session ¥, %R T SessionFactoryUtils)75 doGetSession:
Java 1R
1. protected Session getSession() {
2 if (isAlwaysUseNewSession()) {
3 return SessionFactoryUtils.getNewSession(getSessionFactory(), getEntityInterceptor());
4l }
5. else if (!isAllowCreate()) {
6 return SessionFactoryUtils.getSession(getSessionFactory(), false);
7 }
8 else {
9 return SessionFactoryUtils.getSession(
10. getSessionFactory(), getEntityInterceptor(), getldbcExceptionTranslator());
11. }
12. }

TREZRA T T AR A £y Template JISH:AE] Hibernate FUZEATIRE T, AN % Spring CL42 4 FATTXT Session fZREXAI R, gi45
AL BRI T B - AN R R KT8 T H P A

.. Spring Acegi HEZ2 SR SR

A B2 — T Spring Acegi (K54S HL Sz B .
Servlet.Filter (1531 AuthenticationProcessingFilter J& 2l Web T ifi (1) 4iiF i #2 - 7E AbstractProcessingFilter j& X T 44N U6k 1ok 72 (1) 15
R :

Java f0h5

1. public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain)

2 throws IOException, ServletException {

3 /11X BRI SEARIESF A Serv]letRequest/SevletResponse [R

4 if (!(request instanceof HttpServletRequest)) {

5. throw new ServletException("Can only process HttpServletRequest");

6 }

7

8 if (!(response instanceof HttpServletResponse)) {

9 throw new ServletException("Can only process HttpServletResponse");

10. }

11.

12. HttpServletRequest httpRequest = (HttpServletRequest) request;

13. HttpServletResponse httpResponse = (HttpServletResponse) response;

14. //AR¥E HttpServletRequest Fl HttpServletResponse HHFATIGIE

15. if (requiresAuthentication(httpRequest, httpResponse)) {

16. if (logger.isDebugEnabled()) {

17. logger.debug("Request is to process authentication");

18. }

19. / /X 5E X Acegi T Authentication X %A AH 56 1 H R B IEAS

20. Authentication authResult;

21.

22. try {

23. onPreAuthentication(httpRequest, httpResponse);

24, /73X B BARES I B AR 28 2558, ELln AuthenticationProcessingFilter SKog ik T Web T YT
FUIGAIE

25. authResult = attemptAuthentication(httpRequest);

26. } catch (AuthenticationException failed) {

27 c // Authentication failed

28. unsuccessfulAuthentication(httpRequest, httpResponse, failed);

29.

30. return;

31. }

32.

33. // Authentication success

34. if (continueChainBeforeSuccessfulAuthentication) {

35. chain.doFilter(request, response);

36. }

37. /158 SR IR B JE 2 AR, LBk BIAH S) 0 ik

38. successfulAuthentication(httpRequest, httpResponse, authResult);

BOE

40. return;

41. }

42.

43. chain.doFilter(request, response);
44. 3}

7t AuthenticationProcessingFilter F (1) B AR TF R 2 IXRE (1) -

Java fU14

1. public Authentication attemptAuthentication(HttpServletRequest request)

2 throws AuthenticationException {

3 / /X B\ HttpServletRequest 753 H 2 56 UF B 2 44 Al

4 String username = obtainUsername(request);

5q String password = obtainPassword(request);

6

7 if (username == null) {

8 username = "";

9 }

10.

11. if (password == null) {

12. password = "";

13. }

14. / /X B AT 20 B 7 44 F 5 1is 6 iE — A Authentication Xf 442 4E45 AuthenticationManager HEATHGIE, HLH (Y
ST R 2 AR S

15. UsernamePasswordAuthenticationToken authRequest = new UsernamePasswordAuthenticationToken(usern
ame, password);

16.

17. // Place the last username attempted into HttpSession for views

18. request.getSession().setAttribute(ACEGI_SECURITY_LAST_USERNAME_KEY, username);

1191

20. // Allow subclasses to set the "details" property

21. setDetails(request, authRequest);

22. / /X 35 AuthenticationManager FEAT 4 F i 7

23. return this.getAuthenticationManager().authenticate(authRequest);

24. }

7F Acegi MEZEH, HEAT IR BE A 32 2252 AuthenticationManager, AT 1EF 2 BREHHTIRARE BEA - BIFAIRAA D2
authenticate 7t AbstractAuthenticationManager 528 H -
JIXFEBAT I AL B2, 32 M Authentication X ZOokid sk AER SR, Horh & T HI P B UES &, BORACESSE, [FINIZXA
Authentication 2> U5 B AU AL]
Java fU14

1. //WRBAERMG, B ALERE R b2 Ll L

2 public final Authentication authenticate(Authentication authRequest)

3. throws AuthenticationException {

4 try {//XBLESEFRIIGIEAEE, FAT T ProviderManager kil Bl AR IGIE R, £ AN Z4L authRequ

est HIE &A% T M HttpServletRequest F175- 210 FH /- % A6 FH 7 4% F135 iy

5. Authentication authResult = doAuthentication(authRequest);
6. copyDetails(authRequest, authResult);

7o

8. return authResult;

9. } catch (AuthenticationException e) {

10. e.setAuthentication(authRequest);

11. throw e;

12. }

13. }

7E ProviderManager 1i:47 55 i I ERAIF T A, B8 BT 300 ek A7 IR 7 A 8
Java fU14
1. public Authentication doAuthentication(Authentication authentication)

2. throws AuthenticationException {

w

tionProvider KUt H, ‘EAEH B FEKLRAEH PR P AR A4S R

/ /X B ECE AP0 provider BERIEARRS, ERCE T AL E 2 4> provider, iX BL I A THLE 11 /& DaoAuthentica

4. Iterator iter = providers.iterator();

5o

6. Class toTest = authentication.getClass();

7o

8. AuthenticationException lastException = null;

O

10. while (iter.hasNext()) {

11. AuthenticationProvider provider = (AuthenticationProvider) iter.next();
12.

13. if (provider.supports(toTest)) {

14. logger.debug("Authentication attempt using " + provider.getClass().getName());
15. //IZEA result WE T IIE PRI 45 15 B

16. Authentication result = null;

17.

18. try {//iXH R provider #4756 AL R A AL

19. result = provider.authenticate(authentication);

20. sessionController.checkAuthenticationAllowed(result);

21. } catch (AuthenticationException ae) {

22. lastException = ae;

23. result = null;

24, }

25.

26. if (result != null) {

27. sessionController.registerSuccessfulAuthentication(result);
28. publishEvent(new AuthenticationSuccessEvent(result));

29.

30. return result;

31. }

32. }

33. }

34.

35. if (lastException == null) {

36. lastException = new ProviderNotFoundException(messages.getMessage("ProviderManager.provider
NotFound",

37. new Object[] {toTest.getName()}, "No AuthenticationProvider found for {0}"));

38. }

39.

40. /7 R BB ATFAERIE AN LR SCH T A

41. String className = exceptionMappings.getProperty(lastException.getClass().getName());

42. AbstractAuthenticationEvent event = null;

43,

44. if (className != null) {

45, try {

46. Class clazz = getClass().getClassLoader().loadClass(className);

47. Constructor constructor = clazz.getConstructor(new Class[] {

48. Authentication.class, AuthenticationException.class

49. 1

50. Object obj = constructor.newInstance(new Object[] {authentication, lastException});

51. Assert.isInstanceOf(AbstractAuthenticationEvent.class, obj, "Must be an AbstractAuthent
icationEvent");

52. event = (AbstractAuthenticationEvent) obj;

53. } catch (ClassNotFoundException ignored) {}

54. catch (NoSuchMethodException ignored) {}

55. catch (IllegalAccessException ignored) {}

56. catch (InstantiationException ignored) {}

57. catch (InvocationTargetException ignored) {}

58. }

59.

60. if (event != null) {

61. publishEvent(event);

62. } else {

63. if (logger.isDebugEnabled()) {

64. logger.debug("No event was found for the exception " + lastException.getClass().getName
s

65. }

66. }

67.

68. // Throw the exception

69. throw lastException;

70. }

A1 1 7t DaoAuthenticationProvider S HEFE K 17 P IBUH X R PR 46 TEAR S BEAT T P IR UERY, R AR
AbstractUserDetailsAuthenticationProvider i S T Kiil: () &b BEARAR -
Java 1R

1. public Authentication authenticate(Authentication authentication)

2. throws AuthenticationException {

00 N oo 1 b~ w

10.
11.
12.
13.
14.
15.
16.
17.
18.
15)
20.
21.

22.
23.
24.
25.
26.
27.

28.
X
30.
31.

32.
33\
34.
35).
36.

37.
38.
BOR
40.
41.

42.

Assert.isInstanceOf(UsernamePasswordAuthenticationToken.class, authentication,

messages.getMessage("AbstractUserDetailsAuthenticationProvider.onlySupports”,

"Only UsernamePasswordAuthenticationToken is supported"));

[/ X BEAFH A 4
String username = (authentication.getPrincipal() == null) ? "NONE_PROVIDED" : authentication.ge

tName();

/] WREE T A7, WNEAETERUAANRH P RAEEE - XHJE UserDetail, JE k55 s 4775 £ 4 K H
AR IXHEAUAN R CHR 25 B8 T

boolean cacheWasUsed = true;

UserDetails user = this.userCache.getUserFromCache(username);
[P, BCEPRSAL, H AU R (IR 55 A R BAE NG AR 2%
if (user == null) {

s"));

");

cacheWasUsed = false;

try {//XH & UserDetailService 2200/ #od 14 B A B 77
user = retrieveUser(username, (UsernamePasswordAuthenticationToken) authentication);
} catch (UsernameNotFoundException notFound) {
if (hideUserNotFoundExceptions) {
throw new BadCredentialsException(messages.getMessage(

"AbstractUserDetailsAuthenticationProvider.badCredentials", "Bad credential

} else {

throw notFound;

Assert.notNull(user, "retrieveUser returned null - a violation of the interface contract

if (luser.isAccountNonLocked()) {

cked",

throw new LockedException(messages.getMessage("AbstractUserDetailsAuthenticationProvider.lo

"User account is locked"));

if (luser.isEnabled()) {

throw new DisabledException(messages.getMessage("AbstractUserDetailsAuthenticationProvider.

disabled",

"User is disabled"));

if (luser.isAccountNonExpired()) {

throw new AccountExpiredException(messages.getMessage("AbstractUserDetailsAuthenticationPro

vider.expired",

"User account has expired"));

43,
44,
45,
46.
47.

48.

49.

50.
51.
52.
53.
54.
5.
56.

57.
58.
59.
60.
61.
62.
63.
64.

65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.

80.

81.
82.

// This check must come here, as we don't want to tell users

// about account status unless they presented the correct credentials

try {//XEEKAFSRE, 1F retrieveUser f B A2 H 7 (1945 5, 7F additionalAuthenticationChecks

FREAT S B P i AN IR 55 8 i P £ R

//ACRAEER, ARG —A Authentication XS GRAELLSHIRAUE], WRIGUEAE L, E M H 7 45

RS e

n);

on);

ave

}

/ /X H] UserDetailService XRS5 R AT, AT A5 Ina 8 L, X LA 1 JdbcDaoI

additionalAuthenticationChecks(user, (UsernamePasswordAuthenticationToken) authenticatio

} catch (AuthenticationException exception) {
if (cacheWasUsed) {
// There was a problem, so try again after checking
// we're using latest data (ie not from the cache)

cacheWasUsed = false;

user = retrieveUser(username, (UsernamePasswordAuthenticationToken) authentication);

additionalAuthenticationChecks(user, (UsernamePasswordAuthenticationToken) authenticati

} else {

throw exception;

if (luser.isCredentialsNonExpired()) {

throw new CredentialsExpiredException(messages.getMessage(

"AbstractUserDetailsAuthenticationProvider.credentialsExpired"”, "User credentials h

expired"));

¥

/ /AR T T PRV 2 A 8 R R S A 2 BT 2 i 4 P A5 B AR NG A7 LA R kA
if (!cacheWasUsed) {

this.userCache.putUserInCache(user);

Object principalToReturn = user;

if (forcePrincipalAsString) {
principalToReturn = user.getUsername();

}
/ /55 1R 0] Authentication ic3¢ T 56 UE 45 AL DL AL

return createSuccessAuthentication(principalToReturn, authentication, user);

mp R MESH AT n 2

protected final UserDetails retrieveUser(String username, UsernamePasswordAuthenticationToken authe

ntication)

throws AuthenticationException {

UserDetails loadedUser;

83. //IZ R UserDetailService 2 WNEH 22 h A F B0 UEAR &L, (R Ik [o] AN 26 mh i (] 45 UL, 3K 485 B3 T U

serDetails %2 T

84. try {

85. loadedUser = this.getUserDetailsService().loadUserByUsername(username);

86. } catch (DataAccessException repositoryProblem) {

87. throw new AuthenticationServiceException(repositoryProblem.getMessage(), repositoryProble
m);

88. }

89.

90. if (loadedUser == null) {

91. throw new AuthenticationServiceException(

92. "UserDetailsService returned null, which is an interface contract violation");

93. }

94. return loadedUser;

95. }

T EATE 8T F JdbcDaolmp IXANFRE F AR ERE A E P P A5 2 7 (5 5«
Java {005

1. public class JdbcDaoImpl extends JdbcDaoSupport implements UserDetailsService {

2 //~ Static fields/initializers ==

3. [/X BRI SR R BB, BT ERA s PR Ak, n] BL B O SO TR RO AR (R B PR e
et

4, public static final String DEF_USERS_BY_ USERNAME_QUERY =

S} "SELECT username,password,enabled FROM users WHERE username = ?";

6. public static final String DEF_AUTHORITIES BY_ USERNAME_QUERY =

7. "SELECT username,authority FROM authorities WHERE username = ?";

8.

g //~ Instance fields ===

10. / /X HAEH] Spring IDBC SKHEATHUE 1A B 1

11. protected MappingSqlQuery authoritiesByUsernameMapping;

12. protected MappingSqlQuery usersByUsernameMapping;

13. private String authoritiesByUsernameQuery;

14. private String rolePrefix = "";

15. private String usersByUsernameQuery;

16. private boolean usernameBasedPrimaryKey = true;

17.

18. //~ Constructors ==o==S=S=SSS=SSSSSSSS=SsS=Ss=s===s=s

19. /I TEARJIRA R E P AT A B A TiE LI SQL 1E

20. public JdbcDaoImpl() {

21. usersByUsernameQuery = DEF_USERS_BY_USERNAME_QUERY;

22. authoritiesByUsernameQuery = DEF_AUTHORITIES_BY_USERNAME_QUERY;

23. }

24.

25.

26.
27.
28.
29.
30.
31.
32.
33,
34,
35,
36.
37.
38.
39.
40.
41,
42,
43,
44,
45,
46.
47.
48.
49,
50.
51.
52.
53,
54,
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.

protected void addCustomAuthorities(String username, List authorities) {}

public String getAuthoritiesByUsernameQuery() {

return authoritiesByUsernameQuery;

public String getRolePrefix() {

return rolePrefix;

public String getUsersByUsernameQuery() {

return usersByUsernameQuery;

protected void initDao() throws ApplicationContextException {

initMappingSqlQueries();

/**
* Extension point to allow other MappingSqlQuery objects to be substituted in a subclass
*/
protected void initMappingSqlQueries() {
this.usersByUsernameMapping = new UsersByUsernameMapping(getDataSource());

this.authoritiesByUsernameMapping = new AuthoritiesByUsernameMapping(getDataSource());

public boolean isUsernameBasedPrimaryKey() {
return usernameBasedPrimaryKey;
}
/ /3 B HATHE 2 A5 S B AR
public UserDetails loadUserByUsername(String username)
throws UsernameNotFoundException, DataAccessException {
/IR P AAER P RPAREAER, SRR, B R SERE

List users = usersByUsernameMapping.execute(username);

if (users.size() == 0) {
throw new UsernameNotFoundException("User not found");
}
/1S R — MR 5
UserDetails user = (UserDetails) users.get(®); // contains no GrantedAuthority[]
/ /X BAER PR T 2L T BB A R, [RIAE AR 3R 0] — M ASUBR B A 0 T AN

List dbAuths = authoritiesByUsernameMapping.execute(user.getUsername());

addCustomAuthorities(user.getUsername(), dbAuths);

71.
72.
73.
74.
75.
76.

77.
78.
79.
80.
81.
82.
83.
84.

85.
86.
87.
88.
89.
90.
Sl
92.
OS9
94.
e
96.
S ¢
98.
9O

100.
101.
102.
103.

105.
106.

107.
108.
109.
110.
111.
112.
113.

if (dbAuths.size() == 0) {
throw new UsernameNotFoundException("User has no GrantedAuthority");
}
/ 73X BARHEAS 2 AL R AR5 oK T B IR 911 User X R AELLS AT
GrantedAuthority[] arrayAuths = (GrantedAuthority[]) dbAuths.toArray(new GrantedAuthority[d
bAuths.size()]);

String returnUsername = user.getUsername();

if (!usernameBasedPrimaryKey) {

returnUsername = username;

return new User(returnUsername, user.getPassword(), user.isEnabled(), true, true, true, arr
ayAuths);
¥

public void setAuthoritiesByUsernameQuery(String queryString) {

authoritiesByUsernameQuery = queryString;

public void setRolePrefix(String rolePrefix) {

this.rolePrefix = rolePrefix;

public void setUsernameBasedPrimaryKey(boolean usernameBasedPrimaryKey) {

this.usernameBasedPrimaryKey = usernameBasedPrimaryKey;

public void setUsersByUsernameQuery(String usersByUsernameQueryString) {

this.usersByUsernameQuery = usersByUsernameQueryString;

/**
* X HLE] Spring IDBC FUEE ZEEaME, HAKRT LIS XF IDBC B0 M, X ANZEAE HY 2 d0 808 122 2k 15 21 i e o
LEHH NN GES - —METEH 0/R S
<
protected class AuthoritiesByUsernameMapping extends MappingSqlQuery {
protected AuthoritiesByUsernameMapping(DataSource ds) {
super(ds, authoritiesByUsernameQuery);
declareParameter(new SqlParameter(Types.VARCHAR));

compile();

114.

115. protected Object mapRow(ResultSet rs, int rownum)

116. throws SQLException {

117. String roleName = rolePrefix + rs.getString(2);

118. GrantedAuthorityImpl authority = new GrantedAuthorityImpl(roleName);
119.

120. return authority;

121. }

122. }

123.

124. [/

125. * Query object to look up a user.

126. */

127. protected class UsersByUsernameMapping extends MappingSqlQuery {
128. protected UsersByUsernameMapping(DataSource ds) {

129. super(ds, usersByUsernameQuery);

130. declareParameter(new SqlParameter(Types.VARCHAR));

131. compile();

132. }

133.

134. protected Object mapRow(ResultSet rs, int rownum)

135. throws SQLException {

136. String username = rs.getString(1);

137. String password = rs.getString(2);

138. boolean enabled = rs.getBoolean(3);

139. UserDetails user = new User(username, password, enabled, true, true, true,
140. new GrantedAuthority[] {new GrantedAuthorityImpl("HOLDER")});
141.

142. return user;

143. }

144. }

145. }

M AR B P AE B mE N B P BN A5 BRI i e A5 R B bR, A Eeoxh i R A
DaoAuthenticationProvider
Java fXH4
//3XA> UserDetail J& WA 2 h A 21, XA authentication &M A 15211
protected void additionalAuthenticationChecks(UserDetails userDetails,
UsernamePasswordAuthenticationToken authentication)
throws AuthenticationException {

1
2
3
4
5o Object salt = null;
6
7
8
9

if (this.saltSource != null) {
salt = this.saltSource.getSalt(userDetails);

}
10. /TR P B MR, B R

11.
12.
13.

14.
15.
16.
17.

18.

15)
20.
21.
22.
23.

24.
25.
26.

")

if (authentication.getCredentials() == null) {
throw new BadCredentialsException(messages.getMessage(

"AbstractUserDetailsAuthenticationProvider.badCredentials"”, "Bad credentials

includeDetailsObject ? userDetails : null);

}
/13 HLERAR R P N A 2T

String presentedPassword = authentication.getCredentials() == null ? "" : authentication.ge

tCredentials().toString();

piifiia

"),

/ /3% BT P N (P 2 o AN 2 R A 22 B (AR), X BL T LU passwordEncoder S04 e 5L (1) % 1t

/1 BURANKALR, R e, R A I A)
if (!passwordEncoder.isPasswordvalid(
userDetails.getPassword(), presentedPassword, salt)) {
throw new BadCredentialsException(messages.getMessage(

"AbstractUserDetailsAuthenticationProvider.badCredentials"”, "Bad credentials

includeDetailsObject ? userDetails : null);

b T A Acegi BEATIRIERIERE, M AuthenticationProcessingFilter 224k Http i sk 75 21 H 2 N (K 2 & Rss i, X e8P i
NHIBRAFAE 2503 Authentication %1% 45 J-44 845 AuthenticatioManager Sk L 7E IR 453t O T 7 45 Rk 58 AN AL, AN %
B¢ i LAG 218 B HY P A5 RUBE —> Authentication i DUR OB ABUSEHAEH] o 72 HARR SR RE b, AT T JRATC B4 1 25 Ao
Provider A J %} Niff) UserDetailService I Encoder 283k 5e e W 3k UK 4525 g FH 7 H00is LA K 15 B P N TR 36 TR G0 B A

FAIM FilterSecurityInterceptor FA TN F-HF EFEFATIZA :
Java A5
[/ TR PEES A HTTP U sk A

public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain)

W 00 N O U1 A W N R

N
A W N R O

15.
16.
17.

}

throws IOException, ServletException {
FilterInvocation fi = new FilterInvocation(request, response, chain);

invoke(fi);

/ /X BAR A

public void invoke(FilterInvocation fi) throws IOException, ServletException {

if ((fi.getRequest() != null) && (fi.getRequest().getAttribute(FILTER_APPLIED) != null)
&& observeOncePerRequest) {
/IS AT 2 ek A 2 JE AN T T
fi.getChain().doFilter(fi.getRequest(), fi.getResponse());
} else {
/PR MBI IR, d e aaill, [FINHEARA 0 BEESF - FILTER_APPLIED, FUKHUATIH

KA AR 2 et 7

if (fi.getRequest() != null) {
fi.getRequest().setAttribute(FILTER_APPLIED, Boolean.TRUE);

18. [/X R R TS

19. InterceptorStatusToken token = super.beforeInvocation(fi);

20. /1 M AR BT

21. try {

22. fi.getChain().doFilter(fi.getRequest(), fi.getResponse());
23. } finally {

24, super.afterInvocation(token, null);

25. }

26. }

27. }

FAE B AE AbstractSecurityInterceptor J& /EREXS HTTP i 3k 45 22 A i) -

Java A4

1. protected InterceptorStatusToken beforeInvocation(Object object) {

2 Assert.notNull(object, "Object was null");

3

4. if (!getSecureObjectClass().isAssignableFrom(object.getClass())) {

5 throw new IllegalArgumentException("Security invocation attempted for object "

6 + object.getClass().getName()

7 + " but AbstractSecurityInterceptor only configured to support secure objects of typ
e: "

8. + getSecureObjectClass());

9. }

10. / /X B E FilterSecurityInterceptor () ObjectDefinitionSource @1, XL BN E TR E K 2 &R E

11. ConfigAttributeDefinition attr = this.obtainObjectDefinitionSource().getAttributes(object);

12.

13. if (attr == null) {

14. if(rejectPublicInvocations) {

15. throw new IllegalArgumentException(

16. "No public invocations are allowed via this AbstractSecurityInterceptor. "

17. + "This indicates a configuration error because the "

18. + "AbstractSecurityInterceptor.rejectPublicInvocations property is set to 'true'
")

19. }

20.

21. if (logger.isDebugEnabled()) {

22. logger.debug("Public object - authentication not attempted");

23. }

24,

25. publishEvent(new PublicInvocationEvent(object));

26.

27. return null; // no further work post-invocation

28. }

29.

30.

31. if (logger.isDebugEnabled()) {

32.

33.
34.

35.
36.

37.
38.
39.
40.
41.
42.
43,

44,
45,

46.

47.
48.
49.
50.
51.
52.
53.
54.
5.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.

logger.debug("Secure object: + object.toString() + "; ConfigAttributes: " + attr.toString
)
}

//XH I\ SecurityContextHolder #1 &1 Authentication X%, — il & x4 iE] SecurityContextHolder 1

if (SecurityContextHolder.getContext().getAuthentication() == null) {

credentialsNotFound(messages.getMessage("AbstractSecurityInterceptor.authenticationNotFound

"An Authentication object was not found in the SecurityContext"), object, attr);

/7 BURFTBCA A B AR, X BT o0 AT Ab 2

Authentication authenticated;

if (!SecurityContextHolder.getContext().getAuthentication().isAuthenticated() || alwaysReauthen
ticate) {
try {//HHBCE LA AuthenticationManager AbFSKL, Gn SASHUAS R, il HE S 45 TR Ak B
authenticated = this.authenticationManager.authenticate(SecurityContextHolder.getContex
t()
.getAuthen
tication());
} catch (AuthenticationException authenticationException) {

throw authenticationException;

// We don't authenticated.setAuthentication(true), because each provider should do that
if (logger.isDebugEnabled()) {

logger.debug("Successfully Authenticated: " + authenticated.toString());
}
/ /X BB SRR I JE 74210 Authentication fR77%] SecurityContextHolder it k1 H
SecurityContextHolder.getContext().setAuthentication(authenticated);

} else {//iX M ACFIRTIH 4 ESMHR, G SecurityContextHolder H1 L If Authentication

authenticated = SecurityContextHolder.getContext().getAuthentication();

if (logger.isDebugEnabled()) {

logger.debug("Previously Authenticated: + authenticated.toString());

/1 KR AL I
try {
/ /I EC & 45 Y AccessDecisionManager SKRIEATHAL
this.accessDecisionManager.decide(authenticated, object, attr);
} catch (AccessDeniedException accessDeniedException) {
/ 1 BAAN T) S AT <A

AuthorizationFailureEvent event = new AuthorizationFailureEvent(object, attr, authenticate

72. accessDeniedException);

73. publishEvent(event);

74.

7S throw accessDeniedException;

76. }

77.

78. if (logger.isDebugEnabled()) {

79. logger.debug("Authorization successful");

80. }

81.

82. AuthorizedEvent event = new AuthorizedEvent(object, attr, authenticated);

83. publishEvent(event);

84.

85. // XEFJEH—A RunAsManager KA 4TI Authentication X%, BRIAKEUL N4 /2 NullRunAsManager <48
SecurityContextHolder H1[f] Authentication XJ %k =%

86. Authentication runAs = this.runAsManager.buildRunAs(authenticated, object, attr);

87.

88. if (runAs == null) {

89. if (logger.isDebugEnabled()) {

90. logger.debug("RunAsManager did not change Authentication object");

91. }

92.

931 // no further work post-invocation

94. return new InterceptorStatusToken(authenticated, false, attr, object);

95. } else {

96. if (logger.isDebugEnabled()) {

97. logger.debug("Switching to RunAs Authentication: " + runAs.toString());

98. }

99.

100. SecurityContextHolder.getContext().setAuthentication(runAs);

101.

102. // revert to token.Authenticated post-invocation

103. return new InterceptorStatusToken(authenticated, true, attr, object);

104. }

105. }

F)3X B BAME BN & AffirmativeBased 14 AccessDecisionManager:

Java X4
1. //REHEX T RFNS], HEREA el
2. public void decide(Authentication authentication, Object object, ConfigAttributeDefinition conf
ig)
3. throws AccessDeniedException {
4. / /X R E LSRG RS
5. Iterator iter = this.getDecisionVoters().iterator();
6. int deny = 0;
7. [IRUAE A BERS AT R, IR0 B4 Rt ATk 52

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

29.
30.
31.
32.

33.
34.
35.
36.

37.
38.
39.
40.
41.
42.
43,
44.
45.
46.
47.
48.
49.
50.

while (iter.hasNext()) {
AccessDecisionVoter voter = (AccessDecisionVoter) iter.next();
int result = voter.vote(authentication, object, config);
/KRN BER G RHAT A, W AER b S, IR AGE, AR A o, IR Ak SR
switch (result) {
case AccessDecisionVoter.ACCESS_GRANTED:

return;

case AccessDecisionVoter.ACCESS_DENIED:
X HX JON AT B

deny++;

break;

default:

break;

}
[1ORAT SO SR, Pl e, AR
if (deny > 0) {
throw new AccessDeniedException(messages.getMessage("AbstractAccessDecisionManager.acce
ssDenied",

"Access is denied"));

/] XX FREEIATE, BHEAEEFPUERPE G, B EAET, i allowIfAllAbstainDecisions A%

checkAllowIfAllAbstainDecisions();
}
BARMBEE M BEEAR T, BATXHRECE T RoleVoter K ATHE
public int vote(Authentication authentication, Object object, ConfigAttributeDefinition confi
g) {
int result = ACCESS_ABSTAIN;
/ 13X LA YR 1) 22 A T
Iterator iter = config.getConfigAttributes();

while (iter.hasNext()) {
ConfigAttribute attribute = (ConfigAttribute) iter.next();

if (this.supports(attribute)) {
result = ACCESS_DENIED;

// X BRI) PR AT I, Lt TTAD ROLE A RTZR Y £ e
[/ RN JEYE, S A AN TEECZ E AR [GrantedAuthority, W7 V.

for (int i = 9; i < authentication.getAuthorities().length; i++) {
if (attribute.getAttribute().equals(authentication.getAuthorities()[i].getAutho

rity())) {

51. return ACCESS_GRANTED;
52. }

53. }

54, }

55, }

56.

57. return result;

58. }

A A F RO R — AN 38T, M FilterSecurityInterceptor 44 Http 1R AT, ARG BRIUR B U5 1 22 A0 B LU, X245
A2 1 AccessDecisionManager KT ¥ 5k, Spring A FRATHR AL T4 T PSR ASRALH], LGRS TATT AT ARC B PR SR S8 e s, 3kl

2 LT AT T f B AR A I R

	一、IOC 容器
	二、IoC 容器在Web 容器中的启动
	三、Spring JDBC
	四、Spring MVC
	五、Spring AOP 获取Proxy
	六、Spring 声明式事务处理
	七、Spring AOP 中对拦截器调用的实现
	八、Spring 驱动Hibernate 的实现
	九、Spring Acegi 框架鉴权的实现

