
2020/10/28 05｜ RWMutex：读写锁的实现原理及避坑指南-极客时间

https://time.geekbang.org/column/article/297868?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 1/18

05｜ RWMutex：读写锁的实现原理及避坑指南
2020-10-21 晁岳攀

Go 并发编程实战课 进入课程

讲述：安晓辉
时长 26:46 大小 24.52M



你好，我是鸟窝。

在前面的四节课中，我们学习了第一个同步原语，即 Mutex，我们使用它来保证读写共享

资源的安全性。不管是读还是写，我们都通过 Mutex 来保证只有一个 goroutine 访问共

享资源，这在某些情况下有点“浪费”。比如说，在写少读多的情况下，即使一段时间内

没有写操作，大量并发的读访问也不得不在 Mutex 的保护下变成了串行访问，这个时候，

使用 Mutex，对性能的影响就比较大。

怎么办呢？你是不是已经有思路了，对，就是区分读写操作。

我来具体解释一下。如果某个读操作的 goroutine 持有了锁，在这种情况下，其它读操作

的 goroutine 就不必一直傻傻地等待了，而是可以并发地访问共享变量，这样我们就可以





 下载APP 

2020/10/28 05｜ RWMutex：读写锁的实现原理及避坑指南-极客时间

https://time.geekbang.org/column/article/297868?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 2/18

将串行的读变成并行读，提高读操作的性能。当写操作的 goroutine 持有锁的时候，它就

是一个排外锁，其它的写操作和读操作的 goroutine，需要阻塞等待持有这个锁的

goroutine 释放锁。

这一类并发读写问题叫作 readers-writers 问题，意思就是，同时可能有多个读或者多个

写，但是只要有一个线程在执行写操作，其它的线程都不能执行读写操作。

Go 标准库中的 RWMutex（读写锁）就是用来解决这类 readers-writers 问题的。所

以，这节课，我们就一起来学习 RWMutex。我会给你介绍读写锁的使用场景、实现原理

以及容易掉入的坑，你一定要记住这些陷阱，避免在实际的开发中犯相同的错误。

什么是 RWMutex？

我先简单解释一下读写锁 RWMutex。标准库中的 RWMutex 是一个 reader/writer 互斥

锁。RWMutex 在某一时刻只能由任意数量的 reader 持有，或者是只被单个的 writer 持

有。

RWMutex 的方法也很少，总共有 5 个。

RWMutex 的零值是未加锁的状态，所以，当你使用 RWMutex 的时候，无论是声明变

量，还是嵌入到其它 struct 中，都不必显式地初始化。

我以计数器为例，来说明一下，如何使用 RWMutex 保护共享资源。计数器的

count++操作是写操作，而获取 count 的值是读操作，这个场景非常适合读写锁，因为读

操作可以并行执行，写操作时只允许一个线程执行，这正是 readers-writers 问题。

Lock/Unlock：写操作时调用的方法。如果锁已经被 reader 或者 writer 持有，那么，

Lock 方法会一直阻塞，直到能获取到锁；Unlock 则是配对的释放锁的方法。

RLock/RUnlock：读操作时调用的方法。如果锁已经被 writer 持有的话，RLock 方法

会一直阻塞，直到能获取到锁，否则就直接返回；而 RUnlock 是 reader 释放锁的方

法。

RLocker：这个方法的作用是为读操作返回一个 Locker 接口的对象。它的 Lock 方法会

调用 RWMutex 的 RLock 方法，它的 Unlock 方法会调用 RWMutex 的 RUnlock 方

法。

2020/10/28 05｜ RWMutex：读写锁的实现原理及避坑指南-极客时间

https://time.geekbang.org/column/article/297868?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 3/18

在这个例子中，使用 10 个 goroutine 进行读操作，每读取一次，sleep 1 毫秒，同时，还

有一个 gorotine 进行写操作，每一秒写一次，这是一个 1 writer-n reader 的读写场景，

而且写操作还不是很频繁（一秒一次）：

可以看到，Incr 方法会修改计数器的值，是一个写操作，我们使用 Lock/Unlock 进行保

护。Count 方法会读取当前计数器的值，是一个读操作，我们使用 RLock/RUnlock 方法

进行保护。

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

func main() {
 var counter Counter
 for i := 0; i < 10; i++ { // 10个reader
 go func() {
 for {
 counter.Count() // 计数器读操作
 time.Sleep(time.Millisecond)
 }
 }()
 }

 for { // 一个writer
 counter.Incr() // 计数器写操作
 time.Sleep(time.Second)
 }
}
// 一个线程安全的计数器
type Counter struct {
 mu sync.RWMutex
 count uint64
}

// 使用写锁保护
func (c *Counter) Incr() {
 c.mu.Lock()
 c.count++
 c.mu.Unlock()
}

// 使用读锁保护
func (c *Counter) Count() uint64 {
 c.mu.RLock()
 defer c.mu.RUnlock()
 return c.count
}

2020/10/28 05｜ RWMutex：读写锁的实现原理及避坑指南-极客时间

https://time.geekbang.org/column/article/297868?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 4/18

Incr 方法每秒才调用一次，所以，writer 竞争锁的频次是比较低的，而 10 个 goroutine

每毫秒都要执行一次查询，通过读写锁，可以极大提升计数器的性能，因为在读取的时

候，可以并发进行。如果使用 Mutex，性能就不会像读写锁这么好。因为多个 reader 并

发读的时候，使用互斥锁导致了 reader 要排队读的情况，没有 RWMutex 并发读的性能

好。

如果你遇到可以明确区分 reader 和 writer goroutine 的场景，且有大量的并发读、少量

的并发写，并且有强烈的性能需求，你就可以考虑使用读写锁 RWMutex 替换 Mutex。

在实际使用 RWMutex 的时候，如果我们在 struct 中使用 RWMutex 保护某个字段，一

般会把它和这个字段放在一起，用来指示两个字段是一组字段。除此之外，我们还可以采

用匿名字段的方式嵌入 struct，这样，在使用这个 struct 时，我们就可以直接调用

Lock/Unlock、RLock/RUnlock 方法了，这和我们前面在01 讲中介绍 Mutex 的使用方

法很类似，你可以回去复习一下。

RWMutex 的实现原理

RWMutex 是很常见的并发原语，很多编程语言的库都提供了类似的并发类型。RWMutex

一般都是基于互斥锁、条件变量（condition variables）或者信号量（semaphores）等

并发原语来实现。Go 标准库中的 RWMutex 是基于 Mutex 实现的。

readers-writers 问题一般有三类，基于对读和写操作的优先级，读写锁的设计和实现也分

成三类。

Read-preferring：读优先的设计可以提供很高的并发性，但是，在竞争激烈的情况下

可能会导致写饥饿。这是因为，如果有大量的读，这种设计会导致只有所有的读都释放

了锁之后，写才可能获取到锁。

Write-preferring：写优先的设计意味着，如果已经有一个 writer 在等待请求锁的

话，它会阻止新来的请求锁的 reader 获取到锁，所以优先保障 writer。当然，如果有

一些 reader 已经请求了锁的话，新请求的 writer 也会等待已经存在的 reader 都释放

锁之后才能获取。所以，写优先级设计中的优先权是针对新来的请求而言的。这种设计

主要避免了 writer 的饥饿问题。

不指定优先级：这种设计比较简单，不区分 reader 和 writer 优先级，某些场景下这种

不指定优先级的设计反而更有效，因为第一类优先级会导致写饥饿，第二类优先级可能

2020/10/28 05｜ RWMutex：读写锁的实现原理及避坑指南-极客时间

https://time.geekbang.org/column/article/297868?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 5/18

Go 标准库中的 RWMutex 设计是 Write-preferring 方案。一个正在阻塞的 Lock 调用

会排除新的 reader 请求到锁。

RWMutex 包含一个 Mutex，以及四个辅助字段 writerSem、readerSem、readerCount

和 readerWait：

我来简单解释一下这几个字段。

这里的常量 rwmutexMaxReaders，定义了最大的 reader 数量。

好了，知道了 RWMutex 的设计方案和具体字段，下面我来解释一下具体的方法实现。

RLock/RUnlock 的实现

首先，我们看一下移除了 race 等无关紧要的代码后的 RLock 和 RUnlock 方法：

会导致读饥饿，这种不指定优先级的访问不再区分读写，大家都是同一个优先级，解决

了饥饿的问题。

复制代码
1

2

3

4

5

6

7

8

9

type RWMutex struct {
 w Mutex // 互斥锁解决多个writer的竞争
 writerSem uint32 // writer信号量
 readerSem uint32 // reader信号量
 readerCount int32 // reader的数量
 readerWait int32 // writer等待完成的reader的数量
}

const rwmutexMaxReaders = 1 << 30

字段 w：为 writer 的竞争锁而设计；

字段 readerCount：记录当前 reader 的数量（以及是否有 writer 竞争锁）；

readerWait：记录 writer 请求锁时需要等待 read 完成的 reader 的数量；

writerSem 和 readerSem：都是为了阻塞设计的信号量。

复制代码

2020/10/28 05｜ RWMutex：读写锁的实现原理及避坑指南-极客时间

https://time.geekbang.org/column/article/297868?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 6/18

第 2 行是对 reader 计数加 1。你可能比较困惑的是，readerCount 怎么还可能为负数

呢？其实，这是因为，readerCount 这个字段有双重含义：

调用 RUnlock 的时候，我们需要将 Reader 的计数减去 1（第 8 行），因为 reader 的数

量减少了一个。但是，第 8 行的 AddInt32 的返回值还有另外一个含义。如果它是负值，

就表示当前有 writer 竞争锁，在这种情况下，还会调用 rUnlockSlow 方法，检查是不是

reader 都释放读锁了，如果读锁都释放了，那么可以唤醒请求写锁的 writer 了。

当一个或者多个 reader 持有锁的时候，竞争锁的 writer 会等待这些 reader 释放完，才可

能持有这把锁。打个比方，在房地产行业中有条规矩叫做“买卖不破租赁”，意思是说，

就算房东把房子卖了，新业主也不能把当前的租户赶走，而是要等到租约结束后，才能接

管房子。这和 RWMutex 的设计是一样的。当 writer 请求锁的时候，是无法改变既有的

reader 持有锁的现实的，也不会强制这些 reader 释放锁，它的优先权只是限定后来的

reader 不要和它抢。

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

func (rw *RWMutex) RLock() {
 if atomic.AddInt32(&rw.readerCount, 1) < 0 {
 // rw.readerCount是负值的时候，意味着此时有writer等待请求锁，因为writer优先
 runtime_SemacquireMutex(&rw.readerSem, false, 0)
 }
}
func (rw *RWMutex) RUnlock() {
 if r := atomic.AddInt32(&rw.readerCount, -1); r < 0 {
 rw.rUnlockSlow(r) // 有等待的writer
 }
}
func (rw *RWMutex) rUnlockSlow(r int32) {
 if atomic.AddInt32(&rw.readerWait, -1) == 0 {
 // 最后一个reader了，writer终于有机会获得锁了
 runtime_Semrelease(&rw.writerSem, false, 1)
 }
}

没有 writer 竞争或持有锁时，readerCount 和我们正常理解的 reader 的计数是一样

的；

但是，如果有 writer 竞争锁或者持有锁时，那么，readerCount 不仅仅承担着 reader

的计数功能，还能够标识当前是否有 writer 竞争或持有锁，在这种情况下，请求锁的

reader 的处理进入第 4 行，阻塞等待锁的释放。

2020/10/28 05｜ RWMutex：读写锁的实现原理及避坑指南-极客时间

https://time.geekbang.org/column/article/297868?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 7/18

所以，rUnlockSlow 将持有锁的 reader 计数减少 1 的时候，会检查既有的 reader 是不是

都已经释放了锁，如果都释放了锁，就会唤醒 writer，让 writer 持有锁。

Lock

RWMutex 是一个多 writer 多 reader 的读写锁，所以同时可能有多个 writer 和 reader。

那么，为了避免 writer 之间的竞争，RWMutex 就会使用一个 Mutex 来保证 writer 的互

斥。

一旦一个 writer 获得了内部的互斥锁，就会反转 readerCount 字段，把它从原来的正整

数 readerCount(>=0) 修改为负数（readerCount-rwmutexMaxReaders），让这个字段

保持两个含义（既保存了 reader 的数量，又表示当前有 writer）。

我们来看下下面的代码。第 5 行，还会记录当前活跃的 reader 数量，所谓活跃的

reader，就是指持有读锁还没有释放的那些 reader。

如果 readerCount 不是 0，就说明当前有持有读锁的 reader，RWMutex 需要把这个当

前 readerCount 赋值给 readerWait 字段保存下来（第 7 行）， 同时，这个 writer 进入

阻塞等待状态（第 8 行）。

每当一个 reader 释放读锁的时候（调用 RUnlock 方法时），readerWait 字段就减 1，直

到所有的活跃的 reader 都释放了读锁，才会唤醒这个 writer。

Unlock

复制代码
1

2

3

4

5

6

7

8

9

10

func (rw *RWMutex) Lock() {
 // 首先解决其他writer竞争问题
 rw.w.Lock()
 // 反转readerCount，告诉reader有writer竞争锁
 r := atomic.AddInt32(&rw.readerCount, -rwmutexMaxReaders) + rwmutexMaxRead
 // 如果当前有reader持有锁，那么需要等待
 if r != 0 && atomic.AddInt32(&rw.readerWait, r) != 0 {
 runtime_SemacquireMutex(&rw.writerSem, false, 0)
 }
}

2020/10/28 05｜ RWMutex：读写锁的实现原理及避坑指南-极客时间

https://time.geekbang.org/column/article/297868?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 8/18

当一个 writer 释放锁的时候，它会再次反转 readerCount 字段。可以肯定的是，因为当

前锁由 writer 持有，所以，readerCount 字段是反转过的，并且减去了

rwmutexMaxReaders 这个常数，变成了负数。所以，这里的反转方法就是给它增加

rwmutexMaxReaders 这个常数值。

既然 writer 要释放锁了，那么就需要唤醒之后新来的 reader，不必再阻塞它们了，让它们

开开心心地继续执行就好了。

在 RWMutex 的 Unlock 返回之前，需要把内部的互斥锁释放。释放完毕后，其他的

writer 才可以继续竞争这把锁。

在这段代码中，我删除了 race 的处理和异常情况的检查，总体看来还是比较简单的。这里

有几个重点，我要再提醒你一下。首先，你要理解 readerCount 这个字段的含义以及反转

方式。其次，你还要注意字段的更改和内部互斥锁的顺序关系。在 Lock 方法中，是先获取

内部互斥锁，才会修改的其他字段；而在 Unlock 方法中，是先修改的其他字段，才会释

放内部互斥锁，这样才能保证字段的修改也受到互斥锁的保护。

好了，到这里我们就完整学习了 RWMutex 的概念和实现原理。RWMutex 的应用场景非

常明确，就是解决 readers-writers 问题。学完了今天的内容，之后当你遇到这类问题时，

要优先想到 RWMutex。另外，Go 并发原语代码实现的质量都很高，非常精炼和高效，所

以，你可以通过看它们的实现原理，学习一些编程的技巧。当然，还有非常重要的一点就

是要知道 reader 或者 writer 请求锁的时候，既有的 reader/writer 和后续请求锁的

reader/writer 之间的（释放锁 / 请求锁）顺序关系。

复制代码
1

2

3

4

5

6

7

8

9

10

11

func (rw *RWMutex) Unlock() {
 // 告诉reader没有活跃的writer了
 r := atomic.AddInt32(&rw.readerCount, rwmutexMaxReaders)

 // 唤醒阻塞的reader们
 for i := 0; i < int(r); i++ {
 runtime_Semrelease(&rw.readerSem, false, 0)
 }
 // 释放内部的互斥锁
 rw.w.Unlock()
}

2020/10/28 05｜ RWMutex：读写锁的实现原理及避坑指南-极客时间

https://time.geekbang.org/column/article/297868?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 9/18

有个很有意思的事儿，就是官方的文档对 RWMutex 介绍是错误的，或者说是不明确

的，在下一个版本（Go 1.16）中，官方会更改对 RWMutex 的介绍，具体是这样的：

A RWMutex is a reader/writer mutual exclusion lock.

The lock can be held by any number of readers or a single writer, and

a blocked writer also blocks new readers from acquiring the lock.

这个描述是相当精确的，它指出了 RWMutex 可以被谁持有，以及 writer 比后续的

reader 有获取锁的优先级。

虽然 RWMutex 暴露的 API 也很简单，使用起来也没有复杂的逻辑，但是和 Mutex 一

样，在实际使用的时候，也会很容易踩到一些坑。接下来，我给你重点介绍 3 个常见的踩

坑点。

RWMutex 的 3 个踩坑点

坑点 1：不可复制

前面刚刚说过，RWMutex 是由一个互斥锁和四个辅助字段组成的。我们很容易想到，互

斥锁是不可复制的，再加上四个有状态的字段，RWMutex 就更加不能复制使用了。

不能复制的原因和互斥锁一样。一旦读写锁被使用，它的字段就会记录它当前的一些状

态。这个时候你去复制这把锁，就会把它的状态也给复制过来。但是，原来的锁在释放的

时候，并不会修改你复制出来的这个读写锁，这就会导致复制出来的读写锁的状态不对，

可能永远无法释放锁。

那该怎么办呢？其实，解决方案也和互斥锁一样。你可以借助 vet 工具，在变量赋值、函

数传参、函数返回值、遍历数据、struct 初始化等时，检查是否有读写锁隐式复制的情

景。

坑点 2：重入导致死锁

读写锁因为重入（或递归调用）导致死锁的情况更多。

2020/10/28 05｜ RWMutex：读写锁的实现原理及避坑指南-极客时间

https://time.geekbang.org/column/article/297868?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 10/18

我先介绍第一种情况。因为读写锁内部基于互斥锁实现对 writer 的并发访问，而互斥锁本

身是有重入问题的，所以，writer 重入调用 Lock 的时候，就会出现死锁的现象，这个问

题，我们在学习互斥锁的时候已经了解过了。

运行这个程序，你就会得到死锁的错误输出，在 Go 运行的时候，很容易就能检测出来。

第二种死锁的场景有点隐蔽。我们知道，有活跃 reader 的时候，writer 会等待，如果我们

在 reader 的读操作时调用 writer 的写操作（它会调用 Lock 方法），那么，这个 reader

和 writer 就会形成互相依赖的死锁状态。Reader 想等待 writer 完成后再释放锁，而

writer 需要这个 reader 释放锁之后，才能不阻塞地继续执行。这是一个读写锁常见的死锁

场景。

第三种死锁的场景更加隐蔽。

当一个 writer 请求锁的时候，如果已经有一些活跃的 reader，它会等待这些活跃的

reader 完成，才有可能获取到锁，但是，如果之后活跃的 reader 再依赖新的 reader 的

话，这些新的 reader 就会等待 writer 释放锁之后才能继续执行，这就形成了一个环形依

赖： writer 依赖活跃的 reader -> 活跃的 reader 依赖新来的 reader -> 新来的 reader

依赖 writer。

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

func foo(l *sync.RWMutex) {
 fmt.Println("in foo")
 l.Lock()
 bar(l)
 l.Unlock()
}

func bar(l *sync.RWMutex) {
 l.Lock()
 fmt.Println("in bar")
 l.Unlock()
}

func main() {
 l := &sync.RWMutex{}
 foo(l)
}

2020/10/28 05｜ RWMutex：读写锁的实现原理及避坑指南-极客时间

https://time.geekbang.org/column/article/297868?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 11/18

这个死锁相当隐蔽，原因在于它和 RWMutex 的设计和实现有关。啥意思呢？我们来看一

个计算阶乘 (n!) 的例子：

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

func main() {
 var mu sync.RWMutex

 // writer,稍微等待，然后制造一个调用Lock的场景
 go func() {
 time.Sleep(200 * time.Millisecond)
 mu.Lock()
 fmt.Println("Lock")
 time.Sleep(100 * time.Millisecond)
 mu.Unlock()
 fmt.Println("Unlock")
 }()

 go func() {
 factorial(&mu, 10) // 计算10的阶乘, 10!
 }()

2020/10/28 05｜ RWMutex：读写锁的实现原理及避坑指南-极客时间

https://time.geekbang.org/column/article/297868?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 12/18

factoria 方法是一个递归计算阶乘的方法，我们用它来模拟 reader。为了更容易地制造出

死锁场景，我在这里加上了 sleep 的调用，延缓逻辑的执行。这个方法会调用读锁（第 27

行），在第 33 行递归地调用此方法，每次调用都会产生一次读锁的调用，所以可以不断地

产生读锁的调用，而且必须等到新请求的读锁释放，这个读锁才能释放。

同时，我们使用另一个 goroutine 去调用 Lock 方法，来实现 writer，这个 writer 会等待

200 毫秒后才会调用 Lock，这样在调用 Lock 的时候，factoria 方法还在执行中不断调用

RLock。

这两个 goroutine 互相持有锁并等待，谁也不会退让一步，满足了“writer 依赖活跃的

reader -> 活跃的 reader 依赖新来的 reader -> 新来的 reader 依赖 writer”的死锁条

件，所以就导致了死锁的产生。

所以，使用读写锁最需要注意的一点就是尽量避免重入，重入带来的死锁非常隐蔽，而且

难以诊断。

坑点 3：释放未加锁的 RWMutex

和互斥锁一样，Lock 和 Unlock 的调用总是成对出现的，RLock 和 RUnlock 的调用也必

须成对出现。Lock 和 RLock 多余的调用会导致锁没有被释放，可能会出现死锁，而

Unlock 和 RUnlock 多余的调用会导致 panic。在生产环境中出现 panic 是大忌，你总不

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

 select {}
}

// 递归调用计算阶乘
func factorial(m *sync.RWMutex, n int) int {
 if n < 1 { // 阶乘退出条件
 return 0
 }
 fmt.Println("RLock")
 m.RLock()
 defer func() {
 fmt.Println("RUnlock")
 m.RUnlock()
 }()
 time.Sleep(100 * time.Millisecond)
 return factorial(m, n-1) * n // 递归调用

2020/10/28 05｜ RWMutex：读写锁的实现原理及避坑指南-极客时间

https://time.geekbang.org/column/article/297868?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 13/18

希望半夜爬起来处理生产环境程序崩溃的问题吧？所以，在使用读写锁的时候，一定要注

意，不遗漏不多余。

流行的 Go 开发项目中的坑

好了，又到了泡一杯宁夏枸杞加新疆大滩枣的养生茶，静静地欣赏知名项目出现 Bug 的时

候了，这次被拉出来的是 RWMutex 的 Bug。

Docker

issue 36840

 issue 36840修复的是错误地把 writer 当成 reader 的 Bug。 这个地方本来需要修改数

据，需要调用的是写锁，结果用的却是读锁。或许是被它紧挨着的 findNode 方法调用迷

惑了，认为这只是一个读操作。可实际上，代码后面还会有 changeNodeState 方法的调

用，这是一个写操作。修复办法也很简单，只需要改成 Lock/Unlock 即可。

Kubernetes

issue 62464

 issue 62464就是读写锁第二种死锁的场景，这是一个典型的 reader 导致的死锁的例

子。知道墨菲定律吧？“凡是可能出错的事，必定会出错”。你可能觉得我前面讲的

RWMutex 的坑绝对不会被人踩的，因为道理大家都懂，但是你看，Kubernetes 就踩了这

个重入的坑。

这个 issue 在移除 pod 的时候可能会发生，原因就在于，GetCPUSetOrDefault 方法会请

求读锁，同时，它还会调用 GetCPUSet 或 GetDefaultCPUSet 方法。当这两个方法都请

2020/10/28 05｜ RWMutex：读写锁的实现原理及避坑指南-极客时间

https://time.geekbang.org/column/article/297868?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 14/18

求写锁时，是获取不到的，因为 GetCPUSetOrDefault 方法还没有执行完，不会释放读

锁，这就形成了死锁。

总结

在开发过程中，一开始考虑共享资源并发访问问题的时候，我们就会想到互斥锁 Mutex。

因为刚开始的时候，我们还并不太了解并发的情况，所以，就会使用最简单的同步原语来

解决问题。等到系统成熟，真正到了需要性能优化的时候，我们就能静下心来分析并发场

景的可能性，这个时候，我们就要考虑将 Mutex 修改为 RWMutex，来压榨系统的性能。

当然，如果一开始你的场景就非常明确了，比如我就要实现一个线程安全的 map，那么，

一开始你就可以考虑使用读写锁。

正如我在前面提到的，如果你能意识到你要解决的问题是一个 readers-writers 问题，那么

你就可以毫不犹豫地选择 RWMutex，不用考虑其它选择。那在使用 RWMutex 时，最需

要注意的一点就是尽量避免重入，重入带来的死锁非常隐蔽，而且难以诊断。

另外我们也可以扩展 RWMutex，不过实现方法和互斥锁 Mutex 差不多，在技术上是一样

的，都是通过 unsafe 来实现，我就不再具体讲了。课下你可以参照我们上节课学习的方

法，实现一个扩展的 RWMutex。

这一讲我们系统学习了读写锁的相关知识，这里提供给你一个知识地图，帮助你复习本节

课的知识。

2020/10/28 05｜ RWMutex：读写锁的实现原理及避坑指南-极客时间

https://time.geekbang.org/column/article/297868?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 15/18

提建议

思考题

请你写一个扩展的读写锁，比如提供 TryLock，查询当前是否有 writer、reader 的数量等

方法。

欢迎在留言区写下你的思考和答案，我们一起交流讨论。如果你觉得有所收获，也欢迎你

把今天的内容分享给你的朋友或同事。

javascript:void(0);
javascript:void(0);

2020/10/28 05｜ RWMutex：读写锁的实现原理及避坑指南-极客时间

https://time.geekbang.org/column/article/297868?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 16/18

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 04｜ Mutex：骇客编程，如何拓展额外功能？

下一篇 06 | WaitGroup：协同等待，任务编排利器

Junes
2020-10-21

交一下作业，我就不贴完整代码了，分享一下核心思路：

获取两个关键变量，大致思路是根据 起始地址+偏移量，
// readerCount 这个成员变量前有1个mutex+2个uint32
readerCount := atomic.LoadInt32((*int32)(unsafe.Pointer(uintptr(unsafe.Pointer(…
展开

  9

Gopher
2020-10-23

作业思路
和mutex的扩展思路一样，通过unsafe获取指针，在进行偏移获取到reader数量，不等于
0直接返回，否则尝试lock

精选留言 (9)  写留言

2020/10/28 05｜ RWMutex：读写锁的实现原理及避坑指南-极客时间

https://time.geekbang.org/column/article/297868?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 17/18

  1

那时刻
2020-10-23

请问老师一个关于select{}问题，

func foo() {
 fmt.Println("in foo")
} …
展开

作者回复: 现在版本的go运行时过于智能了，会把这个场景“误报”成死锁，其实我们的本意是

让程序hang在这里。

可以改成sleep，waitgroup或者从命令行读取数据等的方式阻塞主goroutine

  1

Ethan Liu
2020-10-21

区分reader和writer的场景，可不可以用channel来实现？如果可以的话，与使用RWMut
ex有什么区别？

  1

Yayu
2020-10-23

老师好，请问“原语”的意思是什么？原子性语句吗？

展开

作者回复: 基础性数据结构，英语是primitive,不是原子性语句哈

 

Linuxer
2020-10-22

试着回答一下课后题，初学GO，请各位大佬指点
const {
 READ = 0
 WRITE = 1
} …

2020/10/28 05｜ RWMutex：读写锁的实现原理及避坑指南-极客时间

https://time.geekbang.org/column/article/297868?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 18/18

展开

 

Panda
2020-10-21

RWMutex 是 Mutex 的增强版本 也是分而治之的思想体现

 

pdf
2020-10-21

Go 1.15
main函数结尾 select {} 直接报死锁

 6 

橙子888
2020-10-21

又是一个需要花时间消化的章节，理解读写锁的原理之后，再参考之前 Mutex 章节扩展
的实现，写一个扩展的读写锁应该不难，惊讶地发现已经有大佬给出答案了……

 

