
2020/12/5 16 | Semaphore：一篇文章搞懂信号量

https://time.geekbang.org/column/article/308399 1/15

16 | Semaphore：一篇文章搞懂信号量
2020-11-16 晁岳攀

Go 并发编程实战课 进入课程

讲述：安晓辉
时长 16:48 大小 15.39M



你好，我是鸟窝。

在前面的课程里，我们学习了标准库的并发原语、原子操作和 Channel，掌握了这些，你

就可以解决 80% 的并发编程问题了。但是，如果你要想进一步提升你的并发编程能力，就

需要学习一些第三方库。

所以，在接下来的几节课里，我会给你分享 Go 官方或者其他人提供的第三方库，这节课

我们先来学习信号量，信号量（Semaphore）是用来控制多个 goroutine 同时访问多个资

源的并发原语。

信号量是什么？都有什么操作？





 下载APP 

2020/12/5 16 | Semaphore：一篇文章搞懂信号量

https://time.geekbang.org/column/article/308399 2/15

信号量的概念是荷兰计算机科学家 Edsger Dijkstra 在 1963 年左右提出来的，广泛应用在

不同的操作系统中。在系统中，会给每一个进程一个信号量，代表每个进程目前的状态。

未得到控制权的进程，会在特定的地方被迫停下来，等待可以继续进行的信号到来。

最简单的信号量就是一个变量加一些并发控制的能力，这个变量是 0 到 n 之间的一个数

值。当 goroutine 完成对此信号量的等待（wait）时，该计数值就减 1，当 goroutine 完

成对此信号量的释放（release）时，该计数值就加 1。当计数值为 0 的时候，goroutine

调用 wait 等待该信号量是不会成功的，除非计数器又大于 0，等待的 goroutine 才有可能

成功返回。

更复杂的信号量类型，就是使用抽象数据类型代替变量，用来代表复杂的资源类型。实际

上，大部分的信号量都使用一个整型变量来表示一组资源，并没有实现太复杂的抽象数据

类型，所以你只要知道有更复杂的信号量就行了，我们这节课主要是学习最简单的信号

量。

说到这儿呢，我想借助一个生活中的例子，来帮你进一步理解信号量。

举个例子，图书馆新购买了 10 本《Go 并发编程的独家秘籍》，有 1 万个学生都想读这本

书，“僧多粥少”。所以，图书馆管理员先会让这 1 万个同学进行登记，按照登记的顺

序，借阅此书。如果书全部被借走，那么，其他想看此书的同学就需要等待，如果有人还

书了，图书馆管理员就会通知下一位同学来借阅这本书。这里的资源是《Go 并发编程的独

家秘籍》这十本书，想读此书的同学就是 goroutine，图书管理员就是信号量。

怎么样，现在是不是很好理解了？那么，接下来，我们来学习下信号量的 P/V 操作。

P/V 操作

Dijkstra 在他的论文中为信号量定义了两个操作 P 和 V。P 操作（descrease、wait、

acquire）是减少信号量的计数值，而 V 操作（increase、signal、release）是增加信号

量的计数值。

使用伪代码表示如下（中括号代表原子操作）：

复制代码
1 function V(semaphore S, integer I):

2020/12/5 16 | Semaphore：一篇文章搞懂信号量

https://time.geekbang.org/column/article/308399 3/15

可以看到，初始化信号量 S 有一个指定数量（n）的资源，它就像是一个有 n 个资源的池

子。P 操作相当于请求资源，如果资源可用，就立即返回；如果没有资源或者不够，那

么，它可以不断尝试或者阻塞等待。V 操作会释放自己持有的资源，把资源返还给信号

量。信号量的值除了初始化的操作以外，只能由 P/V 操作改变。

现在，我们来总结下信号量的实现。

讲到这里，我想再稍微说一个题外话，我们在第 2 讲提到过饥饿，就是说在高并发的极

端场景下，会有些 goroutine 始终抢不到锁。为了处理饥饿的问题，你可以在等待队列中

做一些“文章”。比如实现一个优先级的队列，或者先入先出的队列，等等，保持公平

性，并且照顾到优先级。

在正式进入实现信号量的具体实现原理之前，我想先讲一个知识点，就是信号量和互斥锁

的区别与联系，这有助于我们掌握接下来的内容。

其实，信号量可以分为计数信号量（counting semaphre）和二进位信号量（binary

semaphore）。刚刚所说的图书馆借书的例子就是一个计数信号量，它的计数可以是任意

一个整数。在特殊的情况下，如果计数值只能是 0 或者 1，那么，这个信号量就是二进位

信号量，提供了互斥的功能（要么是 0，要么是 1），所以，有时候互斥锁也会使用二进位

信号量来实现。

2

3

4

5

6

7

8

 [S ← S + I]

function P(semaphore S, integer I):
 repeat:
 [if S ≥ I:
 S ← S − I

break]

初始化信号量：设定初始的资源的数量。

P 操作：将信号量的计数值减去 1，如果新值已经为负，那么调用者会被阻塞并加入到

等待队列中。否则，调用者会继续执行，并且获得一个资源。

V 操作：将信号量的计数值加 1，如果先前的计数值为负，就说明有等待的 P 操作的调

用者。它会从等待队列中取出一个等待的调用者，唤醒它，让它继续执行。

2020/12/5 16 | Semaphore：一篇文章搞懂信号量

https://time.geekbang.org/column/article/308399 4/15

我们一般用信号量保护一组资源，比如数据库连接池、一组客户端的连接、几个打印机资

源，等等。如果信号量蜕变成二进位信号量，那么，它的 P/V 就和互斥锁的 Lock/Unlock

一样了。

有人会很细致地区分二进位信号量和互斥锁。比如说，有人提出，在 Windows 系统中，

互斥锁只能由持有锁的线程释放锁，而二进位信号量则没有这个限制（Stack Overflow

上也有相关的讨论）。实际上，虽然在 Windows 系统中，它们的确有些区别，但是对 Go

语言来说，互斥锁也可以由非持有的 goroutine 来释放，所以，从行为上来说，它们并没

有严格的区别。

我个人认为，没必要进行细致的区分，因为互斥锁并不是一个很严格的定义。实际在遇到

互斥并发的问题时，我们一般选用互斥锁。

好了，言归正传，刚刚我们掌握了信号量的含义和具体操作方式，下面，我们就来具体了

解下官方扩展库的实现。

Go 官方扩展库的实现

在运行时，Go 内部使用信号量来控制 goroutine 的阻塞和唤醒。我们在学习基本并发原

语的实现时也看到了，比如互斥锁的第二个字段：

信号量的 P/V 操作是通过函数实现的：

复制代码
1

2

3

4

type Mutex struct {
 state int32
 sema uint32
}

复制代码
1

2

3

func runtime_Semacquire(s *uint32)
func runtime_SemacquireMutex(s *uint32, lifo bool, skipframes int)
func runtime_Semrelease(s *uint32, handoff bool, skipframes int)

2020/12/5 16 | Semaphore：一篇文章搞懂信号量

https://time.geekbang.org/column/article/308399 5/15

遗憾的是，它是 Go 运行时内部使用的，并没有封装暴露成一个对外的信号量并发原语，

原则上我们没有办法使用。不过没关系，Go 在它的扩展包中提供了信号量

semaphore，不过这个信号量的类型名并不叫 Semaphore，而是叫 Weighted。

之所以叫做 Weighted，我想，应该是因为可以在初始化创建这个信号量的时候设置权重

（初始化的资源数），其实我觉得叫 Semaphore 或许会更好。

我们来分析下这个信号量的几个实现方法。

知道了信号量的实现方法，在实际的场景中，我们应该怎么用呢？我来举个 Worker Pool

的例子，来帮助你理解。

我们创建和 CPU 核数一样多的 Worker，让它们去处理一个 4 倍数量的整数 slice。每个

Worker 一次只能处理一个整数，处理完之后，才能处理下一个。

当然，这个问题的解决方案有很多种，这一次我们使用信号量，代码如下：

Acquire 方法：相当于 P 操作，你可以一次获取多个资源，如果没有足够多的资源，调

用者就会被阻塞。它的第一个参数是 Context，这就意味着，你可以通过 Context 增加

超时或者 cancel 的机制。如果是正常获取了资源，就返回 nil；否则，就返回

ctx.Err()，信号量不改变。

1.

Release 方法：相当于 V 操作，可以将 n 个资源释放，返还给信号量。2.

TryAcquire 方法：尝试获取 n 个资源，但是它不会阻塞，要么成功获取 n 个资源，返

回 true，要么一个也不获取，返回 false。

3.

复制代码
1

2
var (
 maxWorkers = runtime.GOMAXPROCS(0) // worker数量

2020/12/5 16 | Semaphore：一篇文章搞懂信号量

https://time.geekbang.org/column/article/308399 6/15

在这段代码中，main goroutine 相当于一个 dispacher，负责任务的分发。它先请求信号

量，如果获取成功，就会启动一个 goroutine 去处理计算，然后，这个 goroutine 会释放

这个信号量（有意思的是，信号量的获取是在 main goroutine，信号量的释放是在

worker goroutine 中），如果获取不成功，就等到有信号量可以使用的时候，再去获取。

需要提醒你的是，其实，在这个例子中，还有一个值得我们学习的知识点，就是最后的那

一段处理（第 25 行）。如果在实际应用中，你想等所有的 Worker 都执行完，就可以获

取最大计数值的信号量。

Go 扩展库中的信号量是使用互斥锁 +List 实现的。互斥锁实现其它字段的保护，而 List

实现了一个等待队列，等待者的通知是通过 Channel 的通知机制实现的。

我们来看一下信号量 Weighted 的数据结构：

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

 sema = semaphore.NewWeighted(int64(maxWorkers)) //信号量
 task = make([]int, maxWorkers*4) // 任务数，是worker的四
)

func main() {
 ctx := context.Background()

 for i := range task {
 // 如果没有worker可用，会阻塞在这里，直到某个worker被释放
 if err := sema.Acquire(ctx, 1); err != nil {
 break
 }

 // 启动worker goroutine
 go func(i int) {
 defer sema.Release(1)
 time.Sleep(100 * time.Millisecond) // 模拟一个耗时操作
 task[i] = i + 1
 }(i)
 }

 // 请求所有的worker,这样能确保前面的worker都执行完
 if err := sema.Acquire(ctx, int64(maxWorkers)); err != nil {
 log.Printf("获取所有的worker失败: %v", err)
 }

 fmt.Println(task)
}

2020/12/5 16 | Semaphore：一篇文章搞懂信号量

https://time.geekbang.org/column/article/308399 7/15

在信号量的几个实现方法里，Acquire 是代码最复杂的一个方法，它不仅仅要监控资源是

否可用，而且还要检测 Context 的 Done 是否已关闭。我们来看下它的实现代码。

复制代码
1

2

3

4

5

6

type Weighted struct {
 size int64 // 最大资源数
 cur int64 // 当前已被使用的资源
 mu sync.Mutex // 互斥锁，对字段的保护
 waiters list.List // 等待队列
}

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

func (s *Weighted) Acquire(ctx context.Context, n int64) error {
 s.mu.Lock()
 // fast path, 如果有足够的资源，都不考虑ctx.Done的状态，将cur加上n就返回
 if s.size-s.cur >= n && s.waiters.Len() == 0 {
 s.cur += n
 s.mu.Unlock()
 return nil
 }

 // 如果是不可能完成的任务，请求的资源数大于能提供的最大的资源数
 if n > s.size {
 s.mu.Unlock()
 // 依赖ctx的状态返回，否则一直等待
 <-ctx.Done()
 return ctx.Err()
 }

 // 否则就需要把调用者加入到等待队列中
 // 创建了一个ready chan,以便被通知唤醒
 ready := make(chan struct{})
 w := waiter{n: n, ready: ready}
 elem := s.waiters.PushBack(w)
 s.mu.Unlock()

 // 等待
 select {
 case <-ctx.Done(): // context的Done被关闭
 err := ctx.Err()
 s.mu.Lock()
 select {
 case <-ready: // 如果被唤醒了，忽略ctx的状态
 err = nil
 default: 通知waiter
 isFront := s.waiters.Front() == elem
 s.waiters.Remove(elem)

2020/12/5 16 | Semaphore：一篇文章搞懂信号量

https://time.geekbang.org/column/article/308399 8/15

其实，为了提高性能，这个方法中的 fast path 之外的代码，可以抽取成 acquireSlow 方

法，以便其它 Acquire 被内联。

Release 方法将当前计数值减去释放的资源数 n，并唤醒等待队列中的调用者，看是否有

足够的资源被获取。

notifyWaiters 方法就是逐个检查等待的调用者，如果资源不够，或者是没有等待者了，就

返回：

37

38

39

40

41

42

43

44

45

46

47

 // 通知其它的waiters,检查是否有足够的资源
 if isFront && s.size > s.cur {
 s.notifyWaiters()
 }
 }
 s.mu.Unlock()
 return err
 case <-ready: // 被唤醒了
 return nil
 }
 }

复制代码
1

2

3

4

5

6

7

8

9

10

func (s *Weighted) Release(n int64) {
 s.mu.Lock()
 s.cur -= n
 if s.cur < 0 {
 s.mu.Unlock()
 panic("semaphore: released more than held")
 }
 s.notifyWaiters()
 s.mu.Unlock()
}

复制代码
1

2

3

4

5

6

7

8

9

func (s *Weighted) notifyWaiters() {
 for {
 next := s.waiters.Front()
 if next == nil {
 break // No more waiters blocked.
 }

 w := next.Value.(waiter)

2020/12/5 16 | Semaphore：一篇文章搞懂信号量

https://time.geekbang.org/column/article/308399 9/15

notifyWaiters 方法是按照先入先出的方式唤醒调用者。当释放 100 个资源的时候，如果

第一个等待者需要 101 个资源，那么，队列中的所有等待者都会继续等待，即使有的等待

者只需要 1 个资源。这样做的目的是避免饥饿，否则的话，资源可能总是被那些请求资源

数小的调用者获取，这样一来，请求资源数巨大的调用者，就没有机会获得资源了。

好了，到这里，你就知道了官方扩展库的信号量实现方法，接下来你就可以使用信号量

了。不过，在此之前呢，我想给你讲几个使用时的常见错误。这部分内容可是帮助你避坑

的，我建议你好好学习。

使用信号量的常见错误

保证信号量不出错的前提是正确地使用它，否则，公平性和安全性就会受到损害，导致程

序 panic。

在使用信号量时，最常见的几个错误如下：

不过，即使你规避了这些坑，在同时使用多种资源，不同的信号量控制不同的资源的时

候，也可能会出现死锁现象，比如哲学家就餐问题。

就 Go 扩展库实现的信号量来说，在调用 Release 方法的时候，你可以传递任意的整数。

但是，如果你传递一个比请求到的数量大的错误的数值，程序就会 panic。如果传递一个

10

11

12

13

14

15

16

17

18

19

 if s.size-s.cur < w.n {
 //避免饥饿，这里还是按照先入先出的方式处理
 break
 }

 s.cur += w.n
 s.waiters.Remove(next)
 close(w.ready)
 }

}

请求了资源，但是忘记释放它；

释放了从未请求的资源；

长时间持有一个资源，即使不需要它；

不持有一个资源，却直接使用它。

2020/12/5 16 | Semaphore：一篇文章搞懂信号量

https://time.geekbang.org/column/article/308399 10/15

负数，会导致资源永久被持有。如果你请求的资源数比最大的资源数还大，那么，调用者

可能永远被阻塞。

所以，使用信号量遵循的原则就是请求多少资源，就释放多少资源。你一定要注意，必须

使用正确的方法传递整数，不要“耍小聪明”，而且，请求的资源数一定不要超过最大资

源数。

其它信号量的实现

除了官方扩展库的实现，实际上，我们还有很多方法实现信号量，比较典型的就是使用

Channel 来实现。

根据之前的 Channel 类型的介绍以及 Go 内存模型的定义，你应该能想到，使用一个

buffer 为 n 的 Channel 很容易实现信号量，比如下面的代码，我们就是使用 chan

struct{}类型来实现的。

在初始化这个信号量的时候，我们设置它的初始容量，代表有多少个资源可以使用。它使

用 Lock 和 Unlock 方法实现请求资源和释放资源，正好实现了 Locker 接口。

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

 // Semaphore 数据结构，并且还实现了Locker接口
 type semaphore struct {
 sync.Locker
 ch chan struct{}
 }

 // 创建一个新的信号量
 func NewSemaphore(capacity int) sync.Locker {
 if capacity <= 0 {
 capacity = 1 // 容量为1就变成了一个互斥锁
 }
 return &semaphore{ch: make(chan struct{}, capacity)}
 }

 // 请求一个资源
 func (s *semaphore) Lock() {
 s.ch <- struct{}{}
 }

 // 释放资源
 func (s *semaphore) Unlock() {
 <-s.ch

2020/12/5 16 | Semaphore：一篇文章搞懂信号量

https://time.geekbang.org/column/article/308399 11/15

当然，你还可以自己扩展一些方法，比如在请求资源的时候使用 Context 参数

（Acquire(ctx)）、实现 TryLock 等功能。

看到这里，你可能会问，这个信号量的实现看起来非常简单，而且也能应对大部分的信号

量的场景，为什么官方扩展库的信号量的实现不采用这种方法呢？其实，具体是什么原

因，我也不知道，但是我必须要强调的是，官方的实现方式有这样一个功能：它可以一次

请求多个资源，这是通过 Channel 实现的信号量所不具备的。

除了 Channel，marusama/semaphore也实现了一个可以动态更改资源容量的信号

量，也是一个非常有特色的实现。如果你的资源数量并不是固定的，而是动态变化的，我

建议你考虑一下这个信号量库。

总结

这是一个很奇怪的现象：标准库中实现基本并发原语（比如 Mutex）的时候，强烈依赖信

号量实现等待队列和通知唤醒，但是，标准库中却没有把这个实现直接暴露出来放到标准

库，而是通过第三库提供。

不管怎样，信号量这个并发原语在多资源共享的并发控制的场景中被广泛使用，有时候也

会被 Channel 类型所取代，因为一个 buffered chan 也可以代表 n 个资源。

但是，官方扩展的信号量也有它的优势，就是可以一次获取多个资源。在批量获取资源的

场景中，我建议你尝试使用官方扩展的信号量。

23 }

2020/12/5 16 | Semaphore：一篇文章搞懂信号量

https://time.geekbang.org/column/article/308399 12/15

提建议

思考题

欢迎在留言区写下你的思考和答案，我们一起交流讨论。如果你觉得有所收获，也欢迎你

把今天的内容分享给你的朋友或同事。

你能用 Channel 实现信号量并发原语吗？你能想到几种实现方式？1.

为什么信号量的资源数设计成 int64 而不是 uint64 呢？2.

javascript:void(0);
javascript:void(0);

2020/12/5 16 | Semaphore：一篇文章搞懂信号量

https://time.geekbang.org/column/article/308399 13/15

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 15 | 内存模型：Go如何保证并发读写的顺序？

下一篇 17 | SingleFlight 和 CyclicBarrier：请求合并和循环栅栏该怎么用？

myrfy
2020-11-16

第一个问题:
至少两种，写入ch算获取，自己读取ch算获取

第二个问题应该是防止错误获取或者释放信号量时，出现负数溢出到无穷大的问题。如果
溢出到无穷大，就会让信号量失效，从而导致1被保护资源更大规模的破坏

展开

  1

伟伟
2020-11-23

type Semaphore chan struct{}

精选留言 (8)  写留言

2020/12/5 16 | Semaphore：一篇文章搞懂信号量

https://time.geekbang.org/column/article/308399 14/15

func NewSemaphore(cap int) Semaphore {
 return make(chan struct{}, cap)
} …
展开

作者回复: 唯一存在的问题是可能出现死锁。

比如信号量是10，同时有两个goroutine请求8个资源。

 1 

大漠胡萝卜
2020-11-21

在日常开发中，没怎么使用信号量semaphore，一般使用channel来解决这种问题。
另外，并发的时候使用池化技术感觉更加通用吧。

展开

 

虫子樱桃
2020-11-19

老师的例子里面，是通过 计算机的协程 runtime.GOMAXPROCS(0) 来模拟有限的资源
（比喻例子里面的书），那么这个semaphore的场景是不是就是比较适用于请求有流量或
者调用次数限制的场景呢？

作者回复: 这个更多是用ratelimiter,信号量主要并发访问n个资源的场景

 

Ethan Liu
2020-11-17

老师，Acquire函数为什么还会有第二个select语句？这部分逻辑是什么啊？

作者回复: 理解了ctx,也就理解select。当外部context通知取消请求时，会在检查一下当前是否请

求成功了

 

刚子
2020-11-16

2020/12/5 16 | Semaphore：一篇文章搞懂信号量

https://time.geekbang.org/column/article/308399 15/15

不是很理解这句话 ："一次请求多个资源，这是通过 Channel 实现的信号量所不具备
的。"
Channel 也可以开启多个goroutine 去请求多个资源

展开

作者回复: 意思是通过一次调用，只能从chan中获取一个值，多个。goroutine需要调用多次才能

得到n个值

 

容易
2020-11-16

老师的题还是有难度的

展开

 

橙子888
2020-11-16

打卡。

展开

 

