
2020/12/5 20 | 在分布式环境中，队列、栅栏和STM该如何实现？

https://time.geekbang.org/column/article/312590 1/18

20 | 在分布式环境中，队列、栅栏和STM该如何实现？
2020-11-25 晁岳攀

Go 并发编程实战课 进入课程

讲述：安晓辉
时长 14:01 大小 12.85M



你好，我是鸟窝。

上一讲，我已经带你认识了基于 etcd 实现的 Leader 选举、互斥锁和读写锁，今天，我们

来学习下基于 etcd 的分布式队列、栅栏和 STM。

只要你学过计算机算法和数据结构相关的知识， 队列这种数据结构你一定不陌生，它是一

种先进先出的类型，有出队（dequeue）和入队（enqueue）两种操作。在第 12 讲

中，我专门讲到了一种叫做 lock-free 的队列。队列在单机的应用程序中常常使用，但是

在分布式环境中，多节点如何并发地执行入队和出队的操作呢？这一讲，我会带你认识一

下基于 etcd 实现的分布式队列。





 下载APP 

2020/12/5 20 | 在分布式环境中，队列、栅栏和STM该如何实现？

https://time.geekbang.org/column/article/312590 2/18

除此之外，我还会讲用分布式栅栏编排一组分布式节点同时执行的方法，以及简化多个

key 的操作并且提供事务功能的 STM（Software Transactional Memory，软件事务内

存）。

分布式队列和优先级队列

前一讲我也讲到，我们并不是从零开始实现一个分布式队列，而是站在 etcd 的肩膀上，利

用 etcd 提供的功能实现分布式队列。

etcd 集群的可用性由 etcd 集群的维护者来保证，我们不用担心网络分区、节点宕机等问

题。我们可以把这些通通交给 etcd 的运维人员，把我们自己的关注点放在使用上。

下面，我们就来了解下 etcd 提供的分布式队列。etcd 通过

github.com/coreos/etcd/contrib/recipes 包提供了分布式队列这种数据结构。

创建分布式队列的方法非常简单，只有一个，即 NewQueue，你只需要传入 etcd 的

client 和这个队列的名字，就可以了。代码如下：

这个队列只有两个方法，分别是出队和入队，队列中的元素是字符串类型。这两个方法的

签名如下所示：

需要注意的是，如果这个分布式队列当前为空，调用 Dequeue 方法的话，会被阻塞，直

到有元素可以出队才返回。

既然是分布式的队列，那就意味着，我们可以在一个节点将元素放入队列，在另外一个节

点把它取出。

复制代码
1 func NewQueue(client *v3.Client, keyPrefix string) *Queue

复制代码
1

2

3

4

// 入队
func (q *Queue) Enqueue(val string) error
//出队
func (q *Queue) Dequeue() (string, error)

2020/12/5 20 | 在分布式环境中，队列、栅栏和STM该如何实现？

https://time.geekbang.org/column/article/312590 3/18

在我接下来讲的例子中，你就可以启动两个节点，一个节点往队列中放入元素，一个节点

从队列中取出元素，看看是否能正常取出来。etcd 的分布式队列是一种多读多写的队列，

所以，你也可以启动多个写节点和多个读节点。

下面我们来借助代码，看一下如何实现分布式队列。

首先，我们启动一个程序，它会从命令行读取你的命令，然后执行。你可以输入push

<value>，将一个元素入队，输入pop，将一个元素弹出。另外，你还可以使用这个程序

启动多个实例，用来模拟分布式的环境：

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

package main

import (
 "bufio"
 "flag"
 "fmt"
 "log"
 "os"
 "strings"

 "github.com/coreos/etcd/clientv3"
 recipe "github.com/coreos/etcd/contrib/recipes"
)

var (
 addr = flag.String("addr", "http://127.0.0.1:2379", "etcd addresses")
 queueName = flag.String("name", "my-test-queue", "queue name")
)

func main() {
 flag.Parse()

 // 解析etcd地址
 endpoints := strings.Split(*addr, ",")

 // 创建etcd的client
 cli, err := clientv3.New(clientv3.Config{Endpoints: endpoints})
 if err != nil {
 log.Fatal(err)

2020/12/5 20 | 在分布式环境中，队列、栅栏和STM该如何实现？

https://time.geekbang.org/column/article/312590 4/18

我们可以打开两个终端，分别执行这个程序。在第一个终端中执行入队操作，在第二个终

端中执行出队操作，并且观察一下出队、入队是否正常。

除了刚刚说的分布式队列，etcd 还提供了优先级队列（PriorityQueue）。

它的用法和队列类似，也提供了出队和入队的操作，只不过，在入队的时候，除了需要把

一个值加入到队列，我们还需要提供 uint16 类型的一个整数，作为此值的优先级，优先级

高的元素会优先出队。

优先级队列的测试程序如下，你可以在一个节点输入一些不同优先级的元素，在另外一个

节点读取出来，看看它们是不是按照优先级顺序弹出的：

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

 }
 defer cli.Close()

 // 创建/获取队列
 q := recipe.NewQueue(cli, *queueName)

 // 从命令行读取命令
 consolescanner := bufio.NewScanner(os.Stdin)
 for consolescanner.Scan() {
 action := consolescanner.Text()
 items := strings.Split(action, " ")
 switch items[0] {
 case "push": // 加入队列
 if len(items) != 2 {
 fmt.Println("must set value to push")
 continue
 }
 q.Enqueue(items[1]) // 入队
 case "pop": // 从队列弹出
 v, err := q.Dequeue() // 出队
 if err != nil {
 log.Fatal(err)
 }
 fmt.Println(v) // 输出出队的元素
 case "quit", "exit": //退出
 return
 default:
 fmt.Println("unknown action")
 }
 }
}

2020/12/5 20 | 在分布式环境中，队列、栅栏和STM该如何实现？

https://time.geekbang.org/column/article/312590 5/18

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

package main

import (
 "bufio"
 "flag"
 "fmt"
 "log"
 "os"
 "strconv"
 "strings"

 "github.com/coreos/etcd/clientv3"
 recipe "github.com/coreos/etcd/contrib/recipes"
)

var (
 addr = flag.String("addr", "http://127.0.0.1:2379", "etcd addresses")
 queueName = flag.String("name", "my-test-queue", "queue name")
)

func main() {
 flag.Parse()

 // 解析etcd地址
 endpoints := strings.Split(*addr, ",")

 // 创建etcd的client
 cli, err := clientv3.New(clientv3.Config{Endpoints: endpoints})
 if err != nil {
 log.Fatal(err)
 }
 defer cli.Close()

 // 创建/获取队列
 q := recipe.NewPriorityQueue(cli, *queueName)

 // 从命令行读取命令
 consolescanner := bufio.NewScanner(os.Stdin)
 for consolescanner.Scan() {
 action := consolescanner.Text()
 items := strings.Split(action, " ")
 switch items[0] {

2020/12/5 20 | 在分布式环境中，队列、栅栏和STM该如何实现？

https://time.geekbang.org/column/article/312590 6/18

你看，利用 etcd 实现分布式队列和分布式优先队列，就是这么简单。所以，在实际项目

中，如果有这类需求的话，你就可以选择用 etcd 实现。

不过，在使用分布式并发原语时，除了需要考虑可用性和数据一致性，还需要考虑分布式

设计带来的性能损耗问题。所以，在使用之前，你一定要做好性能的评估。

分布式栅栏

在第 17 讲中，我们学习了循环栅栏 CyclicBarrier，它和第 6 讲的标准库中的

WaitGroup，本质上是同一类并发原语，都是等待同一组 goroutine 同时执行，或者是等

待同一组 goroutine 都完成。

在分布式环境中，我们也会遇到这样的场景：一组节点协同工作，共同等待一个信号，在

信号未出现前，这些节点会被阻塞住，而一旦信号出现，这些阻塞的节点就会同时开始继

续执行下一步的任务。

etcd 也提供了相应的分布式并发原语。

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

 case "push": // 加入队列
 if len(items) != 3 {
 fmt.Println("must set value and priority to push")
 continue
 }
 pr, err := strconv.Atoi(items[2]) // 读取优先级
 if err != nil {
 fmt.Println("must set uint16 as priority")
 continue
 }
 q.Enqueue(items[1], uint16(pr)) // 入队
 case "pop": // 从队列弹出
 v, err := q.Dequeue() // 出队
 if err != nil {
 log.Fatal(err)
 }
 fmt.Println(v) // 输出出队的元素
 case "quit", "exit": //退出
 return
 default:
 fmt.Println("unknown action")
 }
 }
}

2020/12/5 20 | 在分布式环境中，队列、栅栏和STM该如何实现？

https://time.geekbang.org/column/article/312590 7/18

Barrier：分布式栅栏

我们先来学习下分布式 Barrier。

分布式 Barrier 的创建很简单，你只需要提供 etcd 的 Client 和 Barrier 的名字就可以了，

如下所示：

Barrier 提供了三个方法，分别是 Hold、Release 和 Wait，代码如下：

学习并发原语最好的方式就是使用它。下面我们就来借助一个例子，来看看 Barrier 该怎么

用。

Barrier：分布式栅栏。如果持有 Barrier 的节点释放了它，所有等待这个 Barrier 的节

点就不会被阻塞，而是会继续执行。

DoubleBarrier：计数型栅栏。在初始化计数型栅栏的时候，我们就必须提供参与节点

的数量，当这些数量的节点都 Enter 或者 Leave 的时候，这个栅栏就会放开。所以，我

们把它称为计数型栅栏。

复制代码
1 func NewBarrier(client *v3.Client, key string) *Barrier

复制代码
1

2

3

func (b *Barrier) Hold() error
func (b *Barrier) Release() error
func (b *Barrier) Wait() error

Hold 方法是创建一个 Barrier。如果 Barrier 已经创建好了，有节点调用它的 Wait 方

法，就会被阻塞。

Release 方法是释放这个 Barrier，也就是打开栅栏。如果使用了这个方法，所有被阻塞

的节点都会被放行，继续执行。

Wait 方法会阻塞当前的调用者，直到这个 Barrier 被 release。如果这个栅栏不存在，

调用者不会被阻塞，而是会继续执行。

2020/12/5 20 | 在分布式环境中，队列、栅栏和STM该如何实现？

https://time.geekbang.org/column/article/312590 8/18

你可以在一个终端中运行这个程序，执行"hold""release"命令，模拟栅栏的持有和释放。

在另外一个终端中运行这个程序，不断调用"wait"方法，看看是否能正常地跳出阻塞继续

执行：

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

package main

import (
 "bufio"
 "flag"
 "fmt"
 "log"
 "os"
 "strings"

 "github.com/coreos/etcd/clientv3"
 recipe "github.com/coreos/etcd/contrib/recipes"
)

var (
 addr = flag.String("addr", "http://127.0.0.1:2379", "etcd addresses
 barrierName = flag.String("name", "my-test-queue", "barrier name")
)

func main() {
 flag.Parse()

 // 解析etcd地址
 endpoints := strings.Split(*addr, ",")

 // 创建etcd的client
 cli, err := clientv3.New(clientv3.Config{Endpoints: endpoints})
 if err != nil {
 log.Fatal(err)
 }
 defer cli.Close()

 // 创建/获取栅栏
 b := recipe.NewBarrier(cli, *barrierName)

 // 从命令行读取命令

2020/12/5 20 | 在分布式环境中，队列、栅栏和STM该如何实现？

https://time.geekbang.org/column/article/312590 9/18

DoubleBarrier：计数型栅栏

etcd 还提供了另外一种栅栏，叫做 DoubleBarrier，这也是一种非常有用的栅栏。这个栅

栏初始化的时候需要提供一个计数 count，如下所示：

同时，它还提供了两个方法，分别是 Enter 和 Leave，代码如下：

我来解释下这两个方法的作用。

当调用者调用 Enter 时，会被阻塞住，直到一共有 count（初始化这个栅栏的时候设定的

值）个节点调用了 Enter，这 count 个被阻塞的节点才能继续执行。所以，你可以利用它

编排一组节点，让这些节点在同一个时刻开始执行任务。

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

 consolescanner := bufio.NewScanner(os.Stdin)
 for consolescanner.Scan() {
 action := consolescanner.Text()
 items := strings.Split(action, " ")
 switch items[0] {
 case "hold": // 持有这个barrier
 b.Hold()
 fmt.Println("hold")
 case "release": // 释放这个barrier
 b.Release()
 fmt.Println("released")
 case "wait": // 等待barrier被释放
 b.Wait()
 fmt.Println("after wait")
 case "quit", "exit": //退出
 return
 default:
 fmt.Println("unknown action")
 }
 }
}

复制代码
1 func NewDoubleBarrier(s *concurrency.Session, key string, count int) *DoubleBa

复制代码
1

2
func (b *DoubleBarrier) Enter() error
func (b *DoubleBarrier) Leave() error

2020/12/5 20 | 在分布式环境中，队列、栅栏和STM该如何实现？

https://time.geekbang.org/column/article/312590 10/18

同理，如果你想让一组节点在同一个时刻完成任务，就可以调用 Leave 方法。节点调用

Leave 方法的时候，会被阻塞，直到有 count 个节点，都调用了 Leave 方法，这些节点才

能继续执行。

我们再来看一下 DoubleBarrier 的使用例子。你可以起两个节点，同时执行 Enter 方法，

看看这两个节点是不是先阻塞，之后才继续执行。然后，你再执行 Leave 方法，也观察一

下，是不是先阻塞又继续执行的。

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

package main

import (
 "bufio"
 "flag"
 "fmt"
 "log"
 "os"
 "strings"

 "github.com/coreos/etcd/clientv3"
 "github.com/coreos/etcd/clientv3/concurrency"
 recipe "github.com/coreos/etcd/contrib/recipes"
)

var (
 addr = flag.String("addr", "http://127.0.0.1:2379", "etcd addresses
 barrierName = flag.String("name", "my-test-doublebarrier", "barrier name")
 count = flag.Int("c", 2, "")
)

func main() {
 flag.Parse()

 // 解析etcd地址
 endpoints := strings.Split(*addr, ",")

 // 创建etcd的client
 cli, err := clientv3.New(clientv3.Config{Endpoints: endpoints})
 if err != nil {
 log.Fatal(err)
 }

2020/12/5 20 | 在分布式环境中，队列、栅栏和STM该如何实现？

https://time.geekbang.org/column/article/312590 11/18

好了，我们先来简单总结一下。我们在第 17 讲学习的循环栅栏，控制的是同一个进程中的

不同 goroutine 的执行，而分布式栅栏和计数型栅栏控制的是不同节点、不同进程的执

行。当你需要协调一组分布式节点在某个时间点同时运行的时候，可以考虑 etcd 提供的这

组并发原语。

STM

提到事务，你肯定不陌生。在开发基于数据库的应用程序的时候，我们经常用到事务。事

务就是要保证一组操作要么全部成功，要么全部失败。

在学习 STM 之前，我们要先了解一下 etcd 的事务以及它的问题。

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

 defer cli.Close()
 // 创建session
 s1, err := concurrency.NewSession(cli)
 if err != nil {
 log.Fatal(err)
 }
 defer s1.Close()

 // 创建/获取栅栏
 b := recipe.NewDoubleBarrier(s1, *barrierName, *count)

 // 从命令行读取命令
 consolescanner := bufio.NewScanner(os.Stdin)
 for consolescanner.Scan() {
 action := consolescanner.Text()
 items := strings.Split(action, " ")
 switch items[0] {
 case "enter": // 持有这个barrier
 b.Enter()
 fmt.Println("enter")
 case "leave": // 释放这个barrier
 b.Leave()
 fmt.Println("leave")
 case "quit", "exit": //退出
 return
 default:
 fmt.Println("unknown action")
 }
 }
}

2020/12/5 20 | 在分布式环境中，队列、栅栏和STM该如何实现？

https://time.geekbang.org/column/article/312590 12/18

etcd 提供了在一个事务中对多个 key 的更新功能，这一组 key 的操作要么全部成功，要

么全部失败。etcd 的事务实现方式是基于 CAS 方式实现的，融合了 Get、Put 和 Delete

操作。

etcd 的事务操作如下，分为条件块、成功块和失败块，条件块用来检测事务是否成功，如

果成功，就执行 Then(...)，如果失败，就执行 Else(...)：

我们来看一个利用 etcd 的事务实现转账的小例子。我们从账户 from 向账户 to 转账

amount，代码如下：

复制代码
1 Txn().If(cond1, cond2, ...).Then(op1, op2, ...,).Else(op1’, op2’, …)

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

func doTxnXfer(etcd *v3.Client, from, to string, amount uint) (bool, error) {
 // 一个查询事务
 getresp, err := etcd.Txn(ctx.TODO()).Then(OpGet(from), OpGet(to)).Commit()
 if err != nil {
 return false, err
 }
 // 获取转账账户的值
 fromKV := getresp.Responses[0].GetRangeResponse().Kvs[0]
 toKV := getresp.Responses[1].GetRangeResponse().Kvs[1]
 fromV, toV := toUInt64(fromKV.Value), toUint64(toKV.Value)
 if fromV < amount {
 return false, fmt.Errorf(“insufficient value”)
 }
 // 转账事务
 // 条件块
 txn := etcd.Txn(ctx.TODO()).If(
 v3.Compare(v3.ModRevision(from), “=”, fromKV.ModRevision),
 v3.Compare(v3.ModRevision(to), “=”, toKV.ModRevision))
 // 成功块
 txn = txn.Then(
 OpPut(from, fromUint64(fromV - amount)),
 OpPut(to, fromUint64(toV + amount))
 //提交事务
 putresp, err := txn.Commit()
 // 检查事务的执行结果
 if err != nil {
 return false, err
 }
 return putresp.Succeeded, nil
}

2020/12/5 20 | 在分布式环境中，队列、栅栏和STM该如何实现？

https://time.geekbang.org/column/article/312590 13/18

从刚刚的这段代码中，我们可以看到，虽然可以利用 etcd 实现事务操作，但是逻辑还是比

较复杂的。

因为事务使用起来非常麻烦，所以 etcd 又在这些基础 API 上进行了封装，新增了一种叫

做 STM 的操作，提供了更加便利的方法。

下面我们来看一看 STM 怎么用。

要使用 STM，你需要先编写一个 apply 函数，这个函数的执行是在一个事务之中的：

这个方法包含一个 STM 类型的参数，它提供了对 key 值的读写操作。

STM 提供了 4 个方法，分别是 Get、Put、Receive 和 Delete，代码如下：

使用 etcd STM 的时候，我们只需要定义一个 apply 方法，比如说转账方法 exchange，

然后通过 concurrency.NewSTM(cli, exchange)，就可以完成转账事务的执行了。

STM 咋用呢？我们还是借助一个例子来学习下。

下面这个例子创建了 5 个银行账号，然后随机选择一些账号两两转账。在转账的时候，要

把源账号一半的钱要转给目标账号。这个例子启动了 10 个 goroutine 去执行这些事务，

每个 goroutine 要完成 100 个事务。

复制代码
1 apply func(STM) error

复制代码
1

2

3

4

5

6

type STM interface {
 Get(key ...string) string
 Put(key, val string, opts ...v3.OpOption)
 Rev(key string) int64
 Del(key string)
}

2020/12/5 20 | 在分布式环境中，队列、栅栏和STM该如何实现？

https://time.geekbang.org/column/article/312590 14/18

为了确认事务是否出错了，我们最后要校验每个账号的钱数和总钱数。总钱数不变，就代

表执行成功了。这个例子的代码如下：

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

package main

import (
 "context"
 "flag"
 "fmt"
 "log"
 "math/rand"
 "strings"
 "sync"

 "github.com/coreos/etcd/clientv3"
 "github.com/coreos/etcd/clientv3/concurrency"
)

var (
 addr = flag.String("addr", "http://127.0.0.1:2379", "etcd addresses")
)

func main() {
 flag.Parse()

 // 解析etcd地址
 endpoints := strings.Split(*addr, ",")

 cli, err := clientv3.New(clientv3.Config{Endpoints: endpoints})
 if err != nil {
 log.Fatal(err)
 }
 defer cli.Close()

 // 设置5个账户，每个账号都有100元，总共500元
 totalAccounts := 5
 for i := 0; i < totalAccounts; i++ {
 k := fmt.Sprintf("accts/%d", i)
 if _, err = cli.Put(context.TODO(), k, "100"); err != nil {
 log.Fatal(err)
 }
 }

2020/12/5 20 | 在分布式环境中，队列、栅栏和STM该如何实现？

https://time.geekbang.org/column/article/312590 15/18

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

 // STM的应用函数，主要的事务逻辑
 exchange := func(stm concurrency.STM) error {
 // 随机得到两个转账账号
 from, to := rand.Intn(totalAccounts), rand.Intn(totalAccounts)
 if from == to {
 // 自己不和自己转账
 return nil
 }
 // 读取账号的值
 fromK, toK := fmt.Sprintf("accts/%d", from), fmt.Sprintf("accts/%d", t
 fromV, toV := stm.Get(fromK), stm.Get(toK)
 fromInt, toInt := 0, 0
 fmt.Sscanf(fromV, "%d", &fromInt)
 fmt.Sscanf(toV, "%d", &toInt)

 // 把源账号一半的钱转账给目标账号
 xfer := fromInt / 2
 fromInt, toInt = fromInt-xfer, toInt+xfer

 // 把转账后的值写回
 stm.Put(fromK, fmt.Sprintf("%d", fromInt))
 stm.Put(toK, fmt.Sprintf("%d", toInt))
 return nil
 }

 // 启动10个goroutine进行转账操作
 var wg sync.WaitGroup
 wg.Add(10)
 for i := 0; i < 10; i++ {
 go func() {
 defer wg.Done()
 for j := 0; j < 100; j++ {
 if _, serr := concurrency.NewSTM(cli, exchange); serr != nil {
 log.Fatal(serr)
 }
 }
 }()
 }
 wg.Wait()

 // 检查账号最后的数目
 sum := 0
 accts, err := cli.Get(context.TODO(), "accts/", clientv3.WithPrefix()) //
 if err != nil {
 log.Fatal(err)
 }

2020/12/5 20 | 在分布式环境中，队列、栅栏和STM该如何实现？

https://time.geekbang.org/column/article/312590 16/18

总结一下，当你利用 etcd 做存储时，是可以利用 STM 实现事务操作的，一个事务可以包

含多个账号的数据更改操作，事务能够保证这些更改要么全成功，要么全失败。

总结

如果我们把眼光放得更宽广一些，其实并不只是 etcd 提供了这些并发原语，比如我上节课

一开始就提到了，Zookeeper 很早也提供了类似的并发原语，只不过只提供了 Java 的

库，并没有提供合适的 Go 库。另外，根据 Consul 官方的反馈，他们并没有开发这些并

发原语的计划，所以，从目前来看，etcd 是个不错的选择。

当然，也有一些其它不太知名的分布式原语库，但是活跃度不高，可用性低，所以我们也

不需要去了解了。

其实，你也可以使用 Redis 实现分布式锁，或者是基于 MySQL 实现分布式锁，这也是常

用的选择。对于大厂来说，选择起来是非常简单的，只需要看看厂内提供了哪个基础服

务，哪个更稳定些。对于没有 etcd、Redis 这些基础服务的公司来说，很重要的一点，就

是自己搭建一套这样的基础服务，并且运维好，这就需要考察你们对 etcd、Redis、

MySQL 的技术把控能力了，哪个用得更顺手，就用哪个。

一般来说，我不建议你自己去实现分布式原语，最好是直接使用 etcd、Redis 这些成熟的

软件提供的功能，这也意味着，我们将程序的风险转嫁到了这些基础服务上，这些基础服

务必须要能够提供足够的服务保障。

99

100

101

102

103

104

105

106

107

108

 for _, kv := range accts.Kvs { // 遍历账号的值
 v := 0
 fmt.Sscanf(string(kv.Value), "%d", &v)
 sum += v
 log.Printf("account %s: %d", kv.Key, v)
 }

 log.Println("account sum is", sum) // 总数
}

2020/12/5 20 | 在分布式环境中，队列、栅栏和STM该如何实现？

https://time.geekbang.org/column/article/312590 17/18

提建议

思考题

欢迎在留言区写下你的思考和答案，我们一起交流讨论。如果你觉得有所收获，也欢迎你

把今天的内容分享给你的朋友或同事。

部署一个 3 节点的 etcd 集群，测试一下分布式队列的性能。1.

etcd 提供的 STM 是分布式事务吗？2.

javascript:void(0);
javascript:void(0);

2020/12/5 20 | 在分布式环境中，队列、栅栏和STM该如何实现？

https://time.geekbang.org/column/article/312590 18/18

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 19 | 在分布式环境中，Leader选举、互斥锁和读写锁该如何实现？

下一篇 结束语 | 再聊Go并发编程的价值和精进之路

橙子888
2020-11-26

打卡。

展开

 

myrfy
2020-11-25

感觉是包装了一层最基础的乐观锁，离分布式事务应该还差不少吧

 

精选留言 (2)  写留言

