
25 | 更多的测试手法
2018-10-08 郝林

Go语言核心36讲 进入课程

讲述：黄洲君
时长 14:29 大小 6.63M

在前面的文章中，我们一起学习了 Go 程序测试的基础知识和基本测试手法。这主要包括了

Go 程序测试的基本规则和主要流程、testing.T类型和testing.B类型的常用方法、go

test命令的基本使用方式、常规测试结果的解读等等。

在本篇文章，我会继续为你讲解更多更高级的测试方法。这会涉及testing包中更多的

API、go test命令支持的，更多标记更加复杂的测试结果，以及测试覆盖度分析等等。

前导内容：-cpu 的功能

续接前文。我在前面提到了go test命令的标记-cpu，它是用来设置测试执行最大 P 数量

的列表的。





 下载APP 

Go 语言并发编程模型中的 P，正是 goroutine 的数量能够数十万计的关键所在。P 的数量

意味着 Go 程序背后的运行时系统中，会有多少个用于承载可运行的 G 的队列存在。

每一个队列都相当于一条流水线，它会源源不断地把可运行的 G 输送给空闲的 M，并使这

两者对接。

一旦对接完成，被对接的 G 就真正地运行在操作系统的内核级线程之上了。每条流水线之

间虽然会有联系，但都是独立运作的。

因此，最大 P 数量就代表着 Go 语言运行时系统同时运行 goroutine 的能力，也可以被视

为其中逻辑 CPU 的最大个数。而go test命令的-cpu标记正是用于设置这个最大个数

的。

也许你已经知道，在默认情况下，最大 P 数量就等于当前计算机 CPU 核心的实际数量。

当然了，前者也可以大于或者小于后者，如此可以在一定程度上模拟拥有不同的 CPU 核心

数的计算机。

所以，也可以说，使用-cpu标记可以模拟：被测程序在计算能力不同计算机中的表现。

现在，你已经知道了-cpu标记的用途及其背后的含义。那么它的具体用法，以及对go

test命令的影响你是否也清楚呢？

我们今天的问题是：怎样设置-cpu标记的值，以及它会对测试流程产生什么样的影响？

这里的典型回答是：

复习一下，我在讲 go 语句的时候说过，这里的 P 是 processor 的缩写，每

个 processor 都是一个可以承载若干个 G，且能够使这些 G 适时地与 M 进

行对接并得到真正运行的中介。

正是由于 P 的存在，G 和 M 才可以呈现出多对多的关系，并能够及时、灵活

地进行组合和分离。

这里的 G 就是 goroutine 的缩写，可以被理解为 Go 语言自己实现的用户级

线程。M 即为 machine 的缩写，代表着系统级线程，或者说操作系统内核

级别的线程。

标记-cpu的值应该是一个正整数的列表，该列表的表现形式为：以英文半角逗号分隔的多

个整数字面量，比如1,2,4。

针对于此值中的每一个正整数，go test命令都会先设置最大 P 数量为该数，然后再执行

测试函数。

如果测试函数有多个，那么go test命令会依照此方式逐个执行。

问题解析

实际上，不论我们是否追加了-cpu标记，go test命令执行测试函数时流程都是相同的，

只不过具体执行步骤会略有不同。

go test命令在进行准备工作的时候会读取-cpu标记的值，并把它转换为一个以int为元

素类型的切片，我们也可以称它为逻辑 CPU 切片。

如果该命令发现我们并没有追加这个标记，那么就会让逻辑 CPU 切片只包含一个元素值，

即最大 P 数量的默认值，也就是当前计算机 CPU 核心的实际数量。

在准备执行某个测试函数的时候，无论该函数是功能测试函数，还是性能测试函数，go

test命令都会迭代逻辑 CPU 切片，并且在每次迭代时，先依据当前的元素值设置最大 P

数量，然后再去执行测试函数。

注意，对于性能测试函数来说，这里可能不只执行了一次。你还记得测试函数的执行时间上

限，以及那个由b.N代表的被测程序的执行次数吗？

如果你忘了，那么可以再复习一下上篇文章中的第二个扩展问题。概括来讲，go test命

令每一次对性能测试函数的执行，都是一个探索的过程。它会在测试函数的执行时间上限不

变的前提下，尝试找到被测程序的最大执行次数。

在这个过程中，性能测试函数可能会被执行多次。为了以后描述方便，我们把这样一个探索

的过程称为：对性能测试函数的一次探索式执行，这其中包含了对该函数的若干次执行，当

以1,2,4为例，go test命令会先以1,2,4为最大 P 数量分别去执行第一个测

试函数，之后再用同样的方式执行第二个测试函数，以此类推。

然，肯定也包括了对被测程序更多次的执行。

说到多次执行测试函数，我们就不得不提及另外一个标记，即-count。-count标记是专

门用于重复执行测试函数的。它的值必须大于或等于0，并且默认值为1。

如果我们在运行go test命令的时候追加了-count 5，那么对于每一个测试函数，命令

都会在预设的不同条件下（比如不同的最大 P 数量下）分别重复执行五次。

如果我们把前文所述的-cpu标记、-count标记，以及探索式执行联合起来看，就可以用

一个公式来描述单个性能测试函数，在go test命令的一次运行过程中的执行次数，即：

对于功能测试函数来说，这个公式会更加简单一些，即：

1 性能测试函数的执行次数 = `-cpu`标记的值中正整数的个数 x `-count`标记的值 x 探索式执行中测试函数

复制代码

1 功能测试函数的执行次数 = `-cpu`标记的值中正整数的个数 x `-count`标记的值

复制代码

（测试函数的实际执行次数）

看完了这两个公式，我想，你也许遇到过这种情况，在对 Go 程序执行某种自动化测试的

过程中，测试日志会显得特别多，而且好多都是重复的。

这时，我们首先就应该想到，上面这些导致测试函数多次执行的标记和流程。我们往往需要

检查这些标记的使用是否合理、日志记录是否有必要等等，从而对测试日志进行精简。

比如，对于功能测试函数来说，我们通常没有必要重复执行它，即使是在不同的最大 P 数

量下也是如此。注意，这里所说的重复执行指的是，在被测程序的输入（比如说被测函数的

参数值）相同情况下的多次执行。

有些时候，在输入完全相同的情况下，被测程序会因其他外部环境的不同，而表现出不同的

行为。这时我们需要考虑的往往应该是：这个程序在设计上是否合理，而不是通过重复执行

测试来检测风险。

还有些时候，我们的程序会无法避免地依赖一些外部环境，比如数据库或者其他服务。这

时，我们依然不应该让测试的反复执行成为检测手段，而应该在测试中通过仿造（mock）

外部环境，来规避掉它们的不确定性。

其实，单元测试的意思就是：对单一的功能模块进行边界清晰的测试，并且不掺杂任何对外

部环境的检测。这也是“单元”二字要表达的主要含义。

正好相反，对于性能测试函数来说，我们常常需要反复地执行，并以此试图抹平当时的计算

资源调度的细微差别对被测程序性能的影响。通过-cpu标记，我们还能够模拟被测程序在

计算能力不同计算机中的性能表现。

不过要注意，这里设置的最大 P 数量，最好不要超过当前计算机 CPU 核心的实际数量。因

为一旦超出计算机实际的并行处理能力，Go 程序在性能上就无法再得到显著地提升了。

这就像一个漏斗，不论我们怎样灌水，水的漏出速度总是有限的。更何况，为了管理过多的

P，Go 语言运行时系统还会耗费额外的计算资源。

显然，上述模拟得出的程序性能一定是不准确的。不过，这或多或少可以作为一个参考，因

为，这样模拟出的性能一般都会低于程序在计算环境中的实际性能。

好了，关于-cpu标记，以及由此引出的-count标记和测试函数多次执行的问题，我们就

先聊到这里。不过，为了让你再巩固一下前面的知识，我现在给出一段测试结果：

现在，我希望让你反推一下，我在运行go test命令时追加的-cpu标记和-count标记的

值都是什么。反推之后，你可以用实验的方式进行验证。

知识扩展

问题 1：-parallel标记的作用是什么？

我们在运行go test命令的时候，可以追加标记-parallel，该标记的作用是：设置同一

个被测代码包中的功能测试函数的最大并发执行数。该标记的默认值是测试运行时的最大 P

数量（这可以通过调用表达式runtime.GOMAXPROCS(0)获得）。

我在上篇文章中已经说过，对于功能测试，为了加快测试速度，命令通常会并发地测试多个

被测代码包。

但是，在默认情况下，对于同一个被测代码包中的多个功能测试函数，命令会串行地执行它

们。除非我们在一些功能测试函数中显式地调用t.Parallel方法。

这个时候，这些包含了t.Parallel方法调用的功能测试函数就会被go test命令并发地

执行，而并发执行的最大数量正是由-parallel标记值决定的。不过要注意，同一个功能

测试函数的多次执行之间一定是串行的。

1

2

3

4

5

6

7

8

9

10

11

12

13

pkg: puzzlers/article21/q1
BenchmarkGetPrimesWith100-2 10000000 218 ns/op
BenchmarkGetPrimesWith100-2 10000000 215 ns/op
BenchmarkGetPrimesWith100-4 10000000 215 ns/op
BenchmarkGetPrimesWith100-4 10000000 216 ns/op
BenchmarkGetPrimesWith10000-2 50000 31523 ns/op
BenchmarkGetPrimesWith10000-2 50000 32372 ns/op
BenchmarkGetPrimesWith10000-4 50000 32065 ns/op
BenchmarkGetPrimesWith10000-4 50000 31936 ns/op
BenchmarkGetPrimesWith1000000-2 300 4085799 ns/op
BenchmarkGetPrimesWith1000000-2 300 4121975 ns/op
BenchmarkGetPrimesWith1000000-4 300 4112283 ns/op
BenchmarkGetPrimesWith1000000-4 300 4086174 ns/op

复制代码

你可以运行命令go test -v puzzlers/article21/q2或者go test -count=2 -v

puzzlers/article21/q2，查看测试结果，然后仔细地体会一下。

最后，强调一下，-parallel标记对性能测试是无效的。当然了，对于性能测试来说，也

是可以并发进行的，不过机制上会有所不同。

概括地讲，这涉及了b.RunParallel方法、b.SetParallelism方法和-cpu标记的联合

运用。如果想进一步了解，你可以查看testing代码包的文档。

（https://golang.google.cn/pkg/testing）

问题 2：性能测试函数中的计时器是做什么用的？

如果你看过testing包的文档，那么很可能会发现其中的testing.B类型有这么几个指针

方法：StartTimer、StopTimer和ResetTimer。这些方法都是用于操作当前的性能测

试函数专属的计时器的。

所谓的计时器，是一个逻辑上的概念，它其实是testing.B类型中一些字段的统称。这些

字段用于记录：当前测试函数在当次执行过程中耗费的时间、分配的堆内存的字节数以及分

配次数。

我在下面会以测试函数的执行时间为例，来说明此计时器的用法。不过，你需要知道的是，

这三个方法在开始记录、停止记录或重新记录执行时间的同时，也会对堆内存分配字节数和

分配次数的记录起到相同的作用。

实际上，go test命令本身就会用到这样的计时器。当准备执行某个性能测试函数的时

候，命令会重置并启动该函数专属的计时器。一旦这个函数执行完毕，命令又会立即停止这

个计时器。

如此一来，命令就能够准确地记录下（我们在前面多次提到的）测试函数执行时间了。然

后，命令就会将这个时间与执行时间上限进行比较，并决定是否在改大b.N的值之后，再次

执行测试函数。

还记得吗？这就是我在前面讲过的，对性能测试函数的探索式执行。显然，如果我们在测试

函数中自行操作这个计时器，就一定会影响到这个探索式执行的结果。也就是说，这会让命

令找到被测程序的最大执行次数有所不同。

https://golang.google.cn/pkg/testing%EF%BC%89

请看在 demo57_test.go 文件中的那个性能测试函数，如下所示：

需要注意的是该函数体中的前四行代码。我先停止了当前测试函数的计时器，然后通过调用

time.Sleep函数，模拟了一个比较耗时的额外操作，并且在给变量max赋值之后又启动了

该计时器。

你可以想象一下，我们需要耗费额外的时间去确定max变量的值，虽然在后面它会被传入

GetPrimes函数，但是，针对GetPrimes函数本身的性能测试并不应该包含确定参数值的

过程。

因此，我们需要把这个过程所耗费的时间，从当前测试函数的执行时间中去除掉。这样就能

够避免这一过程对测试结果的不良影响了。

每当这个测试函数执行完毕后，go test命令拿到的执行时间都只应该包含调用

GetPrimes函数所耗费的那些时间。只有依据这个时间做出的后续判断，以及找到被测程

序的最大执行次数才是准确的。

在性能测试函数中，我们可以通过对b.StartTimer和b.StopTimer方法的联合运用，再

去除掉任何一段代码的执行时间。

相比之下，b.ResetTimer方法的灵活性就要差一些了，它只能用于：去除在调用它之前

那些代码的执行时间。不过，无论在调用它的时候，计时器是不是正在运行，它都可以起作

用。

1

2

3

4

5

6

7

8

9

10

func BenchmarkGetPrimes(b *testing.B) {
 b.StopTimer()
 time.Sleep(time.Millisecond * 500) // 模拟某个耗时但与被测程序关系不大的操作。

 max := 10000
 b.StartTimer()

 for i := 0; i < b.N; i++ {
 GetPrimes(max)
 }
}

复制代码

总结

在本篇文章中，我假设你已经理解了上一篇文章涉及的内容。因此，我在这里围绕着几个可

以被go test命令接受的重要标记，进一步地阐释了功能测试和性能测试在不同条件下的

测试流程。

其中，比较重要的有最大 P 数量的含义，-cpu标记的作用及其对测试流程的影响，针对性

能测试函数的探索式执行的意义，测试函数执行时间的计算方法，以及-count标记的用途

和适用场景。

当然了，学会怎样并发地执行多个功能测试函数也是很有必要的。这需要联合运用-

parallel标记和功能测试函数中的t.Parallel方法。

另外，你还需要知道性能测试函数专属计时器的内涵，以及那三个方法对计时器起到的作

用。通过对计时器的操作，我们可以达到精确化性能测试函数的执行时间的目的，从而帮助

go test命令找到被测程序真实的最大执行次数。

到这里，我们对 Go 程序测试的讨论就要告一段落了。我们需要搞清楚的是，go test命

令所执行的基本测试流程是什么，以及我们可以通过什么样的手段让测试流程产生变化，从

而满足我们的测试需求并为我们提供更加充分的测试结果。

希望你已经从中学到了一些东西，并能够学以致用。

思考题

-benchmem标记和-benchtime标记的作用分别是什么？

怎样在测试的时候开启测试覆盖度分析？如果开启，会有什么副作用吗？

关于这两个问题，你都可以参考官方的go 命令文档中的测试标记部分进行回答。

戳此查看 Go 语言专栏文章配套详细代码。

https://golang.google.cn/cmd/go/#hdr-Testing_flags
https://github.com/hyper0x/Golang_Puzzlers

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 24 | 测试的基本规则和流程（下）

下一篇 26 | sync.Mutex与sync.RWMutex

属鱼
2018-10-08

 23

第一个问题:
-benchmem 输出基准测试的内存分配统计信息。
-benchtime 用于指定基准测试的探索式测试执行时间上限
示例：
$ go test -bench=. word …
展开

Charles W...
2018-10-09



Go语言都有哪些框架？我查了一下，貌似只有Web框架？

精选留言 (2)  写留言

