
27 | 条件变量sync.Cond （上）
2018-10-12 郝林

Go语言核心36讲 进入课程

讲述：黄洲君
时长 10:45 大小 4.92M

在上篇文章中，我们主要说的是互斥锁，今天我和你来聊一聊条件变量（conditional

variable）。

前导内容：条件变量与互斥锁

我们常常会把条件变量这个同步工具拿来与互斥锁一起讨论。实际上，条件变量是基于互斥

锁的，它必须有互斥锁的支撑才能发挥作用。

条件变量并不是被用来保护临界区和共享资源的，它是用于协调想要访问共享资源的那些线

程的。当共享资源的状态发生变化时，它可以被用来通知被互斥锁阻塞的线程。





 下载APP 

比如说，我们两个人在共同执行一项秘密任务，这需要在不直接联系和见面的前提下进行。

我需要向一个信箱里放置情报，你需要从这个信箱中获取情报。这个信箱就相当于一个共享

资源，而我们就分别是进行写操作的线程和进行读操作的线程。

如果我在放置的时候发现信箱里还有未被取走的情报，那就不再放置，而先返回。另一方

面，如果你在获取的时候发现信箱里没有情报，那也只能先回去了。这就相当于写的线程或

读的线程阻塞的情况。

虽然我们俩都有信箱的钥匙，但是同一时刻只能有一个人插入钥匙并打开信箱，这就是锁的

作用了。更何况咱们俩是不能直接见面的，所以这个信箱本身就可以被视为一个临界区。

尽管没有协调好，咱们俩仍然要想方设法的完成任务啊。所以，如果信箱里有情报，而你却

迟迟未取走，那我就需要每过一段时间带着新情报去检查一次，若发现信箱空了，我就需要

及时地把新情报放到里面。

另一方面，如果信箱里一直没有情报，那你也要每过一段时间去打开看看，一旦有了情报就

及时地取走。这么做是可以的，但就是太危险了，很容易被敌人发现。

后来，我们又想了一个计策，各自雇佣了一个不起眼的小孩儿。如果早上七点有一个戴红色

帽子的小孩儿从你家楼下路过，那么就意味着信箱里有了新情报。另一边，如果上午九点有

一个戴蓝色帽子的小孩儿从我家楼下路过，那就说明你已经从信箱中取走了情报。

这样一来，咱们执行任务的隐蔽性高多了，并且效率的提升非常显著。这两个戴不同颜色帽

子的小孩儿就相当于条件变量，在共享资源的状态产生变化的时候，起到了通知的作用。

当然了，我们是在用 Go 语言编写程序，而不是在执行什么秘密任务。因此，条件变量在这

里的最大优势就是在效率方面的提升。当共享资源的状态不满足条件的时候，想操作它的线

程再也不用循环往复地做检查了，只要等待通知就好了。

说到这里，想考考你知道怎么使用条件变量吗？所以，我们今天的问题就是：条件变量怎样

与互斥锁配合使用？

这道题的典型回答是：条件变量的初始化离不开互斥锁，并且它的方法有的也是基于互斥锁

的。

条件变量提供的方法有三个：等待通知（wait）、单发通知（signal）和广播通知

（broadcast）。

我们在利用条件变量等待通知的时候，需要在它基于的那个互斥锁保护下进行。而在进行单

发通知或广播通知的时候，却是恰恰相反的，也就是说，需要在对应的互斥锁解锁之后再做

这两种操作。

问题解析

这个问题看起来很简单，但其实可以基于它, 延伸出很多其他的问题。比如，每个方法的使

用时机是什么？又比如，每个方法执行的内部流程是怎样的？

下面，我们一边用代码实现前面那个例子，一边讨论条件变量的使用。

首先，我们先来创建如下几个变量。

变量mailbox代表信箱，是uint8类型的。 若它的值为0则表示信箱中没有情报，而当它

的值为1时则说明信箱中有情报。lock是一个类型为sync.RWMutex的变量，是一个读写

锁，也可以被视为信箱上的那把锁。

另外，基于这把锁，我还创建了两个代表条件变量的变量，名字分别叫sendCond和

recvCond。 它们都是*sync.Cond类型的，同时也都是由sync.NewCond函数来初始化

的。

与sync.Mutex类型和sync.RWMutex类型不同，sync.Cond类型并不是开箱即用的。我

们只能利用sync.NewCond函数创建它的指针值。这个函数需要一个sync.Locker类型的

参数值。

1

2

3

4

var mailbox uint8
var lock sync.RWMutex
sendCond := sync.NewCond(&lock)
recvCond := sync.NewCond(lock.RLocker())

复制代码

还记得吗？我在前面说过，条件变量是基于互斥锁的，它必须有互斥锁的支撑才能够起作

用。因此，这里的参数值是不可或缺的，它会参与到条件变量的方法实现当中。

sync.Locker其实是一个接口，在它的声明中只包含了两个方法定义，即：Lock()和

Unlock()。sync.Mutex类型和sync.RWMutex类型都拥有Lock方法和Unlock方法，

只不过它们都是指针方法。因此，这两个类型的指针类型才是sync.Locker接口的实现类

型。

我在为sendCond变量做初始化的时候，把基于lock变量的指针值传给了sync.NewCond

函数。

原因是，lock变量的Lock方法和Unlock方法分别用于对其中写锁的锁定和解锁，它们与

sendCond变量的含义是对应的。sendCond是专门为放置情报而准备的条件变量，向信箱

里放置情报，可以被视为对共享资源的写操作。

相应的，recvCond变量代表的是专门为获取情报而准备的条件变量。 虽然获取情报也会

涉及对信箱状态的改变，但是好在做这件事的人只会有你一个，而且我们也需要借此了解一

下，条件变量与读写锁中的读锁的联用方式。所以，在这里，我们暂且把获取情报看做是对

共享资源的读操作。

因此，为了初始化recvCond这个条件变量，我们需要的是lock变量中的读锁，并且还需

要是sync.Locker类型的。

可是，lock变量中用于对读锁进行锁定和解锁的方法却是RLock和RUnlock，它们与

sync.Locker接口中定义的方法并不匹配。

好在sync.RWMutex类型的RLocker方法可以实现这一需求。我们只要在调用

sync.NewCond函数时，传入调用表达式lock.RLocker()的结果值，就可以使该函数返

回符合要求的条件变量了。

为什么说通过lock.RLocker()得来的值就是lock变量中的读锁呢？实际上，这个值所拥

有的Lock方法和Unlock方法，在其内部会分别调用lock变量的RLock方法和RUnlock方

法。也就是说，前两个方法仅仅是后两个方法的代理而已。

好了，我们现在有四个变量。一个是代表信箱的mailbox，一个是代表信箱上的锁的

lock。还有两个是，代表了蓝帽子小孩儿的sendCond，以及代表了红帽子小孩儿的

recvCond。

（互斥锁与条件变量）

我，现在是一个 goroutine（携带的go函数），想要适时地向信箱里放置情报并通知你，

应该怎么做呢？

我肯定需要先调用lock变量的Lock方法。注意，这个Lock方法在这里意味的是：持有信

箱上的锁，并且有打开信箱的权利，而不是锁上这个锁。

1

2

3

4

5

6

7

lock.Lock()
for mailbox == 1 {
 sendCond.Wait()
}
mailbox = 1
lock.Unlock()
recvCond.Signal()

复制代码

然后，我要检查mailbox变量的值是否等于1，也就是说，要看看信箱里是不是还存有情

报。如果还有情报，那么我就回家去等蓝帽子小孩儿了。

这就是那条for语句以及其中的调用表达式sendCond.Wait()所表示的含义了。你可能会

问，为什么这里是for语句而不是if语句呢？我在后面会对此进行解释的。

我们再往后看，如果信箱里没有情报，那么我就把新情报放进去，关上信箱、锁上锁，然后

离开。用代码表达出来就是mailbox = 1和lock.Unlock()。

离开之后我还要做一件事，那就是让红帽子小孩儿准时去你家楼下路过。也就是说，我会及

时地通知你“信箱里已经有新情报了”，我们调用recvCond的Signal方法就可以实现这

一步骤。

另一方面，你现在是另一个 goroutine，想要适时地从信箱中获取情报，然后通知我。

你跟我做的事情在流程上其实基本一致，只不过每一步操作的对象是不同的。你需要调用的

是lock变量的RLock方法。因为你要进行的是读操作，并且会使用recvCond变量作为辅

助。recvCond与lock变量的读锁是对应的。

在打开信箱后，你要关注的是信箱里是不是没有情报，也就是检查mailbox变量的值是否

等于0。如果它确实等于0，那么你就需要回家去等红帽子小孩儿，也就是调用recvCond

的Wait方法。这里使用的依然是for语句。

如果信箱里有情报，那么你就应该取走情报，关上信箱、锁上锁，然后离开。对应的代码是

mailbox = 0和lock.RUnlock()。之后，你还需要让蓝帽子小孩儿准时去我家楼下路

过。这样我就知道信箱中的情报已经被你获取了。

1

2

3

4

5

6

7

lock.RLock()
for mailbox == 0 {
 recvCond.Wait()
}
mailbox = 0
lock.RUnlock()
sendCond.Signal()

复制代码

以上这些，就是对咱们俩要执行秘密任务的代码实现。其中的条件变量的用法需要你特别注

意。

再强调一下，只要条件不满足，我就会通过调用sendCond变量的Wait方法，去等待你的

通知，只有在收到通知之后我才会再次检查信箱。

另外，当我需要通知你的时候，我会调用recvCond变量的Signal方法。你使用这两个条

件变量的方式正好与我相反。你可能也看出来了，利用条件变量可以实现单向的通知，而双

向的通知则需要两个条件变量。这也是条件变量的基本使用规则。

你可以打开 demo61.go 文件，看到上述例子的全部实现代码。

总结

我们这两期的文章会围绕条件变量的内容展开，条件变量是基于互斥锁的一种同步工具，它

必须有互斥锁的支撑才能发挥作用。 条件变量可以协调那些想要访问共享资源的线程。当

共享资源的状态发生变化时，它可以被用来通知被互斥锁阻塞的线程。我在文章举了一个两

人访问信箱的例子，并用代码实现了这个过程。

思考题

*sync.Cond类型的值可以被传递吗？那sync.Cond类型的值呢？

感谢你的收听，我们下期再见。

戳此查看 Go 语言专栏文章配套详细代码。

https://github.com/hyper0x/Golang_Puzzlers

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 26 | sync.Mutex与sync.RWMutex

下一篇 28 | 条件变量sync.Cond （下）

属鱼
2018-10-12

 9

个人理解，不确定对不对，请老师评判一下：
因为Go语言传递对象时，使用的是浅拷贝的值传递，所以，当传递一个Cond对象时复制
了这个Cond对象，但是低层保存的L(Locker类型)，noCopy(noCopy类型)，
notify(notifyList类型)，checker(copyChecker)对象的指针没变，因此，*sync.Cond和
sync.Cond都可以传递。

展开

作者回复: 基本正确。Locker是接口，是引用类型，nocopy是结构体，所以直接拷贝值的话，底

层锁还是用的同一个，使用上容易出问题。

精选留言 (11)  写留言

文@雨路
2018-10-12

 3

指针可以传递，值不可以，传递值会拷贝一份，导致出现两份条件变量，彼此之间没有联
系

ming
2018-12-17

 2

多routine从信箱中获取情报, 都在等mailbox变量的值不为0的时候再把它的值变为0，
这个 RLock 限制不了写操作，可能会有多个routine同时将 mailbox 变为0的，跟文中的
场景有些不合。
不知道我理解的有没有问题

展开

beiliu
2018-12-31

 1

您好，老师，官方文档是建议，singal在锁住的情况下使用的“Signal唤醒等待c的一个线
程（如果存在）。调用者在调用本方法时，建议（但并非必须）保持c.L的锁定“

骏Jero
2018-10-12

 1

为什么这里使用for mailbox == 1 { }, 看wait内部实现，等待是wait中
runtime_notifyListWait(&c.notify, t)起到的作用，感觉用if一样达到效果

展开

🤔
2019-04-09



需传递 *sync.Cond

因为 Cond 结构体中的 notify 变量和 checker 变量都是值类型，传递sync.Cond 会复制
值，这样两个锁保留的被阻塞的 Goroutine 就不同了。

展开

...
2019-02-20



老师 wait会释放锁吗

展开

作者回复: 每次执行结束前都会释放，要不其他goroutine没法进入锁保护的临界区。

打你
2018-11-10



我肯定需要先调用lock变量的Lock方法。注意，这个Loc...

极客时间版权所有: https://time.geekbang.org/column/article/41588

这一段写得太拗口啦。什么叫持有锁，而不锁上锁。后面然后又unlock，费解。 …
展开

hello pet...
2018-10-26



老师, 感觉这个送信的例子似乎用chanel实现更简单.在网上也查了一些例子, 发现都可以用
chanel替代. 那使用sync.Cond 的优势是什么呢, 或者有哪些独特的使用场景?

作者回复: 优势是并发流程上的协同，chan的主要任务是传递数据。另外cond是更低层次的工

具，效率更高一些，但是肯定没有chan方便。

云学
2018-10-18



本文的例子如果只用一个条件变量，不用2个，是不是也可以呢？

卒迹
2018-10-16



 if mailbox ==0 {
 recvCond.Wait()
 }
为什么发送goroutine和发送goroutine用if 替换for打印的结果和用for结构一样的

展开

