
33 | 临时对象池sync.Pool
2018-10-26 郝林

Go语言核心36讲 进入课程

讲述：黄洲君
时长 15:10 大小 6.95M

到目前为止，我们已经一起学习了 Go 语言标准库中最重要的那几个同步工具，这包括非常

经典的互斥锁、读写锁、条件变量和原子操作，以及 Go 语言特有的几个同步工具：

1. sync/atomic.Value；

2. sync.Once；

3. sync.WaitGroup

4. context.Context。

今天，我们来讲 Go 语言标准库中的另一个同步工具：sync.Pool。

sync.Pool类型可以被称为临时对象池，它的值可以被用来存储临时的对象。与 Go 语言

的很多同步工具一样，sync.Pool类型也属于结构体类型，它的值在被真正使用之后，就





 下载APP 



不应该再被复制了。

这里的“临时对象”的意思是：不需要持久使用的某一类值。这类值对于程序来说可有可

无，但如果有的话会明显更好。它们的创建和销毁可以在任何时候发生，并且完全不会影响

到程序的功能。

同时，它们也应该是无需被区分的，其中的任何一个值都可以代替另一个。如果你的某类值

完全满足上述条件，那么你就可以把它们存储到临时对象池中。

你可能已经想到了，我们可以把临时对象池当作针对某种数据的缓存来用。实际上，在我看

来，临时对象池最主要的用途就在于此。

sync.Pool类型只有两个方法——Put和Get。Put 用于在当前的池中存放临时对象，它

接受一个interface{}类型的参数；而 Get 则被用于从当前的池中获取临时对象，它会返

回一个interface{}类型的值。

更具体地说，这个类型的Get方法可能会从当前的池中删除掉任何一个值，然后把这个值作

为结果返回。如果此时当前的池中没有任何值，那么这个方法就会使用当前池的New字段创

建一个新值，并直接将其返回。

sync.Pool类型的New字段代表着创建临时对象的函数。它的类型是没有参数但有唯一结

果的函数类型，即：func() interface{}。

这个函数是Get方法最后的临时对象获取手段。Get方法如果到了最后，仍然无法获取到一

个值，那么就会调用该函数。该函数的结果值并不会被存入当前的临时对象池中，而是直接

返回给Get方法的调用方。

这里的New字段的实际值需要我们在初始化临时对象池的时候就给定。否则，在我们调用它

的Get方法的时候就有可能会得到nil。所以，sync.Pool类型并不是开箱即用的。不

过，这个类型也就只有这么一个公开的字段，因此初始化起来也并不麻烦。

举个例子。标准库代码包fmt就使用到了sync.Pool类型。这个包会创建一个用于缓存某

类临时对象的sync.Pool类型值，并将这个值赋给一个名为ppFree的变量。这类临时对

象可以识别、格式化和暂存需要打印的内容。



临时对象池ppFree的New字段在被调用的时候，总是会返回一个全新的pp类型值的指针

（即临时对象）。这就保证了ppFree的Get方法总能返回一个可以包含需要打印内容的

值。

pp类型是fmt包中的私有类型，它有很多实现了不同功能的方法。不过，这里的重点是，它

的每一个值都是独立的、平等的和可重用的。

另外，这些代码在使用完临时对象之后，都会先抹掉其中已缓冲的内容，然后再把它存放到

ppFree中。这样就为重用这类临时对象做好了准备。

众所周知的fmt.Println、fmt.Printf等打印函数都是如此使用ppFree，以及其中的

临时对象的。因此，在程序同时执行很多的打印函数调用的时候，ppFree可以及时地把它

缓存的临时对象提供给它们，以加快执行的速度。

而当程序在一段时间内不再执行打印函数调用时，ppFree中的临时对象又能够被及时地清

理掉，以节省内存空间。

显然，在这个维度上，临时对象池可以帮助程序实现可伸缩性。这就是它的最大价值。

我想，到了这里你已经清楚了临时对象池的基本功能、使用方式、适用场景和存在意义。我

们下面来讨论一下它的一些内部机制，这样，我们就可以更好地利用它做更多的事。

首先，我来问你一个问题。这个问题很可能也是你想问的。今天的问题是：为什么说临时对

象池中的值会被及时地清理掉？

1

2

3

var ppFree = sync.Pool{
 New: func() interface{} { return new(pp) },
}

复制代码

更具体地说，这些对象既互不干扰，又不会受到外部状态的影响。它们几乎

只针对某个需要打印内容的缓冲区而已。由于fmt包中的代码在真正使用这些

临时对象之前，总是会先对其进行重置，所以它们并不在意取到的是哪一个

临时对象。这就是临时对象的平等性的具体体现。



这里的典型回答是：因为，Go 语言运行时系统中的垃圾回收器，所以在每次开始执行之

前，都会对所有已创建的临时对象池中的值进行全面地清除。

问题解析

我在前面已经向你讲述了临时对象会在什么时候被创建，下面我再来详细说说它会在什么时

候被销毁。

sync包在被初始化的时候，会向 Go 语言运行时系统注册一个函数，这个函数的功能就是

清除所有已创建的临时对象池中的值。我们可以把它称为池清理函数。

一旦池清理函数被注册到了 Go 语言运行时系统，后者在每次即将执行垃圾回收时就都会执

行前者。

另外，在sync包中还有一个包级私有的全局变量。这个变量代表了当前的程序中使用的所

有临时对象池的汇总，它是元素类型为*sync.Pool的切片。我们可以称之为池汇总列

表。

通常，在一个临时对象池的Put方法或Get方法第一次被调用的时候，这个池就会被添加到

池汇总列表中。正因为如此，池清理函数总是能访问到所有正在被真正使用的临时对象池。

更具体地说，池清理函数会遍历池汇总列表。对于其中的每一个临时对象池，它都会先将池

中所有的私有临时对象和共享临时对象列表都置为nil，然后再把这个池中的所有本地池列

表都销毁掉。

最后，池清理函数会把池汇总列表重置为空的切片。如此一来，这些池中存储的临时对象就

全部被清除干净了。

如果临时对象池以外的代码再无对它们的引用，那么在稍后的垃圾回收过程中，这些临时对

象就会被当作垃圾销毁掉，它们占用的内存空间也会被回收以备他用。

以上，就是我对临时对象清理的进一步说明。首先需要记住的是，池清理函数和池汇总列表

的含义，以及它们起到的关键作用。一旦理解了这些，那么在有人问到你这个问题的时候，

你应该就可以从容地应对了。



不过，我们在这里还碰到了几个新的词，比如：私有临时对象、共享临时对象列表和本地

池。这些都代表着什么呢？这就涉及了下面的问题。

知识扩展

问题 1：临时对象池存储值所用的数据结构是怎样的？

在临时对象池中，有一个多层的数据结构。正因为有了它的存在，临时对象池才能够非常高

效地存储大量的值。

这个数据结构的顶层，我们可以称之为本地池列表，不过更确切地说，它是一个数组。这个

列表的长度，总是与 Go 语言调度器中的 P 的数量相同。

还记得吗？Go 语言调度器中的 P 是 processor 的缩写，它指的是一种可以承载若干个

G、且能够使这些 G 适时地与 M 进行对接，并得到真正运行的中介。

这里的 G 正是 goroutine 的缩写，而 M 则是 machine 的缩写，后者指代的是系统级的线

程。正因为有了 P 的存在，G 和 M 才能够进行灵活、高效的配对，从而实现强大的并发编

程模型。

P 存在的一个很重要的原因是为了分散并发程序的执行压力，而让临时对象池中的本地池列

表的长度与 P 的数量相同的主要原因也是分散压力。这里所说的压力包括了存储和性能两

个方面。在说明它们之前，我们先来探索一下临时对象池中的那个数据结构。

在本地池列表中的每个本地池都包含了三个字段（或者说组件），它们是：存储私有临时对

象的字段private、代表了共享临时对象列表的字段shared，以及一个sync.Mutex类型

的嵌入字段。



 

sync.Pool 中的本地池与各个 G 的对应关系

实际上，每个本地池都对应着一个 P。我们都知道，一个 goroutine 要想真正运行就必须

先与某个 P 产生关联。也就是说，一个正在运行的 goroutine 必然会关联着某个 P。

在程序调用临时对象池的Put方法或Get方法的时候，总会先试图从该临时对象池的本地池

列表中，获取与之对应的本地池，依据的就是与当前的 goroutine 关联的那个 P 的 ID。

换句话说，一个临时对象池的Put方法或Get方法会获取到哪一个本地池，完全取决于调用

它的代码所在的 goroutine 关联的那个 P。

既然说到了这里，那么紧接着就会有下面这个问题。

问题 2：临时对象池是怎样利用内部数据结构来存取值的？

临时对象池的Put方法总会先试图把新的临时对象，存储到对应的本地池的private字段

中，以便在后面获取临时对象的时候，可以快速地拿到一个可用的值。

只有当这个private字段已经存有某个值时，该方法才会去访问本地池的shared字段。



相应的，临时对象池的Get方法，总会先试图从对应的本地池的private字段处获取一个

临时对象。只有当这个private字段的值为nil时，它才会去访问本地池的shared字段。

一个本地池的shared字段原则上可以被任何 goroutine 中的代码访问到，不论这个

goroutine 关联的是哪一个 P。这也是我把它叫做共享临时对象列表的原因。

相比之下，一个本地池的private字段，只可能被与之对应的那个 P 所关联的 goroutine

中的代码访问到，所以可以说，它是 P 级私有的。

以临时对象池的Put方法为例，它一旦发现对应的本地池的private字段已存有值，就会

去访问这个本地池的shared字段。当然，由于shared字段是共享的，所以此时必须受到

互斥锁的保护。

还记得本地池嵌入的那个sync.Mutex类型的字段吗？它就是这里用到的互斥锁，也就是

说，本地池本身就拥有互斥锁的功能。Put方法会在互斥锁的保护下，把新的临时对象追加

到共享临时对象列表的末尾。

相应的，临时对象池的Get方法在发现对应本地池的private字段未存有值时，也会去访

问后者的shared字段。它会在互斥锁的保护下，试图把该共享临时对象列表中的最后一个

元素值取出并作为结果。

不过，这里的共享临时对象列表也可能是空的，这可能是由于这个本地池中的所有临时对象

都已经被取走了，也可能是当前的临时对象池刚被清理过。

无论原因是什么，Get方法都会去访问当前的临时对象池中的所有本地池，它会去逐个搜索

它们的共享临时对象列表。

只要发现某个共享临时对象列表中包含元素值，它就会把该列表的最后一个元素值取出并作

为结果返回。



 

从 sync.Pool 中获取临时对象的步骤

当然了，即使这样也可能无法拿到一个可用的临时对象，比如，在所有的临时对象池都刚被

大清洗的情况下就会是如此。

这时，Get方法就会使出最后的手段——调用可创建临时对象的那个函数。还记得吗？这个

函数是由临时对象池的New字段代表的，并且需要我们在初始化临时对象池的时候给定。如

果这个字段的值是nil，那么Get方法此时也只能返回nil了。

以上，就是我对这个问题的较完整回答。

总结

今天，我们一起讨论了另一个比较有用的同步工具——sync.Pool类型，它的值被我称为

临时对象池。

临时对象池有一个New字段，我们在初始化这个池的时候最好给定它。临时对象池还拥有两

个方法，即：Put和Get，它们分别被用于向池中存放临时对象，和从池中获取临时对象。

临时对象池中存储的每一个值都应该是独立的、平等的和可重用的。我们应该既不用关心从

池中拿到的是哪一个值，也不用在意这个值是否已经被使用过。



要完全做到这两点，可能会需要我们额外地写一些代码。不过，这个代码量应该是微乎其微

的，就像fmt包对临时对象池的用法那样。所以，在选用临时对象池的时候，我们必须要把

它将要存储的值的特性考虑在内。

在临时对象池的内部，有一个多层的数据结构支撑着对临时对象的存储。它的顶层是本地池

列表，其中包含了与某个 P 对应的那些本地池，并且其长度与 P 的数量总是相同的。

在每个本地池中，都包含一个私有的临时对象和一个共享的临时对象列表。前者只能被其对

应的 P 所关联的那个 goroutine 中的代码访问到，而后者却没有这个约束。从另一个角度

讲，前者用于临时对象的快速存取，而后者则用于临时对象的池内共享。

正因为有了这样的数据结构，临时对象池才能够有效地分散存储压力和性能压力。同时，又

因为临时对象池的Get方法对这个数据结构的妙用，才使得其中的临时对象能够被高效地利

用。比如，该方法有时候会从其他的本地池的共享临时对象列表中，“偷取”一个临时对

象。

这样的内部结构和存取方式，让临时对象池成为了一个特点鲜明的同步工具。它存储的临时

对象都应该是拥有较长生命周期的值，并且，这些值不应该被某个 goroutine 中的代码长

期的持有和使用。

因此，临时对象池非常适合用作针对某种数据的缓存。从某种角度讲，临时对象池可以帮助

程序实现可伸缩性，这也正是它的最大价值。

思考题

今天的思考题是：怎样保证一个临时对象池中总有比较充足的临时对象？

请从临时对象池的初始化和方法调用两个方面作答。必要时可以参考fmt包以及

demo70.go 文件中使用临时对象池的方式。

感谢你的收听，我们下次再见。

戳此查看 Go 语言专栏文章配套详细代码。

https://github.com/hyper0x/Golang_Puzzlers


© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 32 | context.Context类型

下一篇 34 | 并发安全字典sync.Map （上）

到不了的塔
2018-11-17

 2

临时对象池初始化时指定new字段对应的函数返回一个新建临时对象； 
临时对象使用完毕时调用临时对象池的put方法，把该临时对象put回临时对象池中。 
这样就能保证一个临时对象池中总有比较充足的临时对象。

展开

来碗绿豆汤
2018-10-28

 1

是不是临时对象池里面最多有2p个临时对象

展开

精选留言 (7)  写留言



Nixus
2019-04-16



请教老师一个问题: Get方法从临时对象池中取走一个私有临时对象时, 会不会把自己的共享
临时对象列表中的临时对象转移一个为私有临时对象, 以方便下一个Get方法调用? 从文中
的内容看, 应该是不会的

作者回复: Get 的时候只会想法设法拿到一个临时对象，而不会移动任何对象。

王小勃
2019-03-01



打卡😘ོ

展开

Supetsnail
2018-11-25



这个怎么做一下benchmark验证下效率？

展开

Supetsnail
2018-11-25



这个怎么能做一个benchmark对比？

展开

苏安
2018-10-26



老师，不知道还有几讲，最初的课程大纲有相关的拾遗章节，不知道后续的安排还有没？

作者回复: 我会讲完的，放心，预计45讲左右。


