
35 | 并发安全字典sync.Map (下)
2018-10-31 郝林

Go语言核心36讲 进入课程

讲述：黄洲君
时长 11:10 大小 6.41M

你好，我是郝林，今天我们继续来分享并发安全字典 sync.Map 的内容。

我们在上一篇文章中谈到了，由于并发安全字典提供的方法涉及的键和值的类型都是

interface{}，所以我们在调用这些方法的时候，往往还需要对键和值的实际类型进行检

查。

这里大致有两个方案。我们上一篇文章中提到了第一种方案，在编码时就完全确定键和值的

类型，然后利用 Go 语言的编译器帮我们做检查。

这样做很方便，不是吗？不过，虽然方便，但是却让这样的字典类型缺少了一些灵活性。





 下载APP 

加微信：642945106 发送“赠送”领取赠送精品课程
发数字“2”获取众筹列表

如果我们还需要一个键类型为uint32并发安全字典的话，那就不得不再如法炮制地写一遍

代码了。因此，在需求多样化之后，工作量反而更大，甚至会产生很多雷同的代码。

知识扩展

问题 1：怎样保证并发安全字典中的键和值的类型正确性？（方案二）

那么，如果我们既想保持sync.Map类型原有的灵活性，又想约束键和值的类型，那么应该

怎样做呢？这就涉及了第二个方案。

在第二种方案中，我们封装的结构体类型的所有方法，都可以与sync.Map类型的方法完全

一致（包括方法名称和方法签名）。

不过，在这些方法中，我们就需要添加一些做类型检查的代码了。另外，这样并发安全字典

的键类型和值类型，必须在初始化的时候就完全确定。并且，这种情况下，我们必须先要保

证键的类型是可比较的。

所以在设计这样的结构体类型的时候，只包含sync.Map类型的字段就不够了。

比如：

这里ConcurrentMap类型代表的是：可自定义键类型和值类型的并发安全字典。这个类型

同样有一个sync.Map类型的字段m，代表着其内部使用的并发安全字典。

另外，它的字段keyType和valueType，分别用于保存键类型和值类型。这两个字段的类

型都是reflect.Type，我们可称之为反射类型。

1

2

3

4

5

type ConcurrentMap struct {
 m sync.Map
 keyType reflect.Type
 valueType reflect.Type
}

复制代码

这个类型可以代表 Go 语言的任何数据类型。并且，这个类型的值也非常容易获得：通过调

用reflect.TypeOf函数并把某个样本值传入即可。

调用表达式reflect.TypeOf(int(123))的结果值，就代表了int类型的反射类型值。

我们现在来看一看ConcurrentMap类型方法应该怎么写。

先说Load方法，这个方法接受一个interface{}类型的参数key，参数key代表了某个键

的值。

因此，当我们根据 ConcurrentMap 在m字段的值中查找键值对的时候，就必须保证

ConcurrentMap 的类型是正确的。由于反射类型值之间可以直接使用操作符==或!=进行

判等，所以这里的类型检查代码非常简单。

我们把一个接口类型值传入reflect.TypeOf函数，就可以得到与这个值的实际类型对应

的反射类型值。

因此，如果参数值的反射类型与keyType字段代表的反射类型不相等，那么我们就忽略后

续操作，并直接返回。

这时，Load方法的第一个结果value的值为nil，而第二个结果ok的值为false。这完全

符合Load方法原本的含义。

再来说Store方法。Store方法接受两个参数key和value，它们的类型也都是

interface{}。因此，我们的类型检查应该针对它们来做。

1

2

3

4

5

6

func (cMap *ConcurrentMap) Load(key interface{}) (value interface{}, ok bool) {
 if reflect.TypeOf(key) != cMap.keyType {
 return
 }
 return cMap.m.Load(key)
}

复制代码

防止断
更 请务

必加

首发微
信：1

71614
3665

这里的类型检查代码与Load方法中的代码很类似，不同的是对检查结果的处理措施。当参

数key或value的实际类型不符合要求时，Store方法会立即引发 panic。

这主要是由于Store方法没有结果声明，所以在参数值有问题的时候，它无法通过比较平和

的方式告知调用方。不过，这也是符合Store方法的原本含义的。

如果你不想这么做，也是可以的，那么就需要为Store方法添加一个error类型的结果。

并且，在发现参数值类型不正确的时候，让它直接返回相应的error类型值，而不是引发

panic。要知道，这里展示的只一个参考实现，你可以根据实际的应用场景去做优化和改

进。

至于与ConcurrentMap类型相关的其他方法和函数，我在这里就不展示了。它们在类型检

查方式和处理流程上并没有特别之处。你可以在 demo72.go 文件中看到这些代码。

稍微总结一下。第一种方案适用于我们可以完全确定键和值具体类型的情况。在这种情况

下，我们可以利用 Go 语言编译器去做类型检查，并用类型断言表达式作为辅助，就像

IntStrMap那样。

在第二种方案中，我们无需在程序运行之前就明确键和值的类型，只要在初始化并发安全字

典的时候，动态地给定它们就可以了。这里主要需要用到reflect包中的函数和数据类

型，外加一些简单的判等操作。

第一种方案存在一个很明显的缺陷，那就是无法灵活地改变字典的键和值的类型。一旦需求

出现多样化，编码的工作量就会随之而来。

1

2

3

4

5

6

7

8

9

func (cMap *ConcurrentMap) Store(key, value interface{}) {
 if reflect.TypeOf(key) != cMap.keyType {
 panic(fmt.Errorf("wrong key type: %v", reflect.TypeOf(key)))
 }
 if reflect.TypeOf(value) != cMap.valueType {
 panic(fmt.Errorf("wrong value type: %v", reflect.TypeOf(value)))
 }
 cMap.m.Store(key, value)
}

复制代码

第二种方案很好地弥补了这一缺陷，但是，那些反射操作或多或少都会降低程序的性能。我

们往往需要根据实际的应用场景，通过严谨且一致的测试，来获得和比较程序的各项指标，

并以此作为方案选择的重要依据之一。

问题 2：并发安全字典如何做到尽量避免使用锁？

sync.Map类型在内部使用了大量的原子操作来存取键和值，并使用了两个原生的map作为

存储介质。

其中一个原生map被存在了sync.Map的read字段中，该字段是sync/atomic.Value类

型的。 这个原生字典可以被看作一个快照，它总会在条件满足时，去重新保存所属的

sync.Map值中包含的所有键值对。

为了描述方便，我们在后面简称它为只读字典。不过，只读字典虽然不会增减其中的键，但

却允许变更其中的键所对应的值。所以，它并不是传统意义上的快照，它的只读特性只是对

于其中键的集合而言的。

由read字段的类型可知，sync.Map在替换只读字典的时候根本用不着锁。另外，这个只

读字典在存储键值对的时候，还在值之上封装了一层。

它先把值转换为了unsafe.Pointer类型的值，然后再把后者封装，并储存在其中的原生

字典中。如此一来，在变更某个键所对应的值的时候，就也可以使用原子操作了。

sync.Map中的另一个原生字典由它的dirty字段代表。 它存储键值对的方式与read字段

中的原生字典一致，它的键类型也是interface{}，并且同样是把值先做转换和封装后再

进行储存的。我们暂且把它称为脏字典。

注意，脏字典和只读字典如果都存有同一个键值对，那么这里的两个键指的肯定是同一个基

本值，对于两个值来说也是如此。

正如前文所述，这两个字典在存储键和值的时候都只会存入它们的某个指针，而不是基本

值。

sync.Map在查找指定的键所对应的值的时候，总会先去只读字典中寻找，并不需要锁定互

斥锁。只有当确定“只读字典中没有，但脏字典中可能会有这个键”的时候，它才会在锁的

保护下去访问脏字典。

相对应的，sync.Map在存储键值对的时候，只要只读字典中已存有这个键，并且该键值对

未被标记为“已删除”，就会把新值存到里面并直接返回，这种情况下也不需要用到锁。

否则，它才会在锁的保护下把键值对存储到脏字典中。这个时候，该键值对的“已删除”标

记会被抹去。

sync.Map 中的 read 与 dirty

顺便说一句，只有当一个键值对应该被删除，但却仍然存在于只读字典中的时候，才会被用

标记为“已删除”的方式进行逻辑删除，而不会直接被物理删除。

这种情况会在重建脏字典以后的一段时间内出现。不过，过不了多久，它们就会被真正删除

掉。在查找和遍历键值对的时候，已被逻辑删除的键值对永远会被无视。

对于删除键值对，sync.Map会先去检查只读字典中是否有对应的键。如果没有，脏字典中

可能有，那么它就会在锁的保护下，试图从脏字典中删掉该键值对。

拼课微
信：1

71614
3665

最后，sync.Map会把该键值对中指向值的那个指针置为nil，这是另一种逻辑删除的方

式。

除此之外，还有一个细节需要注意，只读字典和脏字典之间是会互相转换的。在脏字典中查

找键值对次数足够多的时候，sync.Map会把脏字典直接作为只读字典，保存在它的read

字段中，然后把代表脏字典的dirty字段的值置为nil。

在这之后，一旦再有新的键值对存入，它就会依据只读字典去重建脏字典。这个时候，它会

把只读字典中已被逻辑删除的键值对过滤掉。理所当然，这些转换操作肯定都需要在锁的保

护下进行。

sync.Map 中 read 与 dirty 的互换

综上所述，sync.Map的只读字典和脏字典中的键值对集合，并不是实时同步的，它们在某

些时间段内可能会有不同。

由于只读字典中键的集合不能被改变，所以其中的键值对有时候可能是不全的。相反，脏字

典中的键值对集合总是完全的，并且其中不会包含已被逻辑删除的键值对。

因此，可以看出，在读操作有很多但写操作却很少的情况下，并发安全字典的性能往往会更

好。在几个写操作当中，新增键值对的操作对并发安全字典的性能影响是最大的，其次是删

除操作，最后才是修改操作。

如果被操作的键值对已经存在于sync.Map的只读字典中，并且没有被逻辑删除，那么修改

它并不会使用到锁，对其性能的影响就会很小。

总结

这两篇文章中，我们讨论了sync.Map类型，并谈到了怎样保证并发安全字典中的键和值的

类型正确性。

为了进一步明确并发安全字典中键值的实际类型，这里大致有两种方案可选。

这两种方案各有利弊，前一种方案在扩展性方面有所欠缺，而后一种方案通常会影响到程序

的性能。在实际使用的时候，我们一般都需要通过客观的测试来帮助决策。

另外，在有些时候，与单纯使用原生字典和互斥锁的方案相比，使用sync.Map可以显著地

减少锁的争用。sync.Map本身确实也用到了锁，但是，它会尽可能地避免使用锁。

这就要说到sync.Map对其持有两个原生字典的巧妙使用了。这两个原生字典一个被称为只

读字典，另一个被称为脏字典。通过对它们的分析，我们知道了并发安全字典的适用场景，

以及每种操作对其性能的影响程度。

思考题

今天的思考题是：关于保证并发安全字典中的键和值的类型正确性，你还能想到其他的方案

吗？

其中一种方案是，在编码时就完全确定键和值的类型，然后利用 Go 语言的编译器帮我们

做检查。

另一种方案是，接受动态的类型设置，并在程序运行的时候通过反射操作进行检查。

戳此查看 Go 语言专栏文章配套详细代码。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 34 | 并发安全字典sync.Map （上）

下一篇 36 | unicode与字符编码

sky
2018-11-01

 5

郝大 go方面能推荐下比较成熟的微服务框架吗

展开

作者回复: 在我发布的Github优秀Go语言项目的思维导图里有。

王小勃  1

精选留言 (6)  写留言

https://github.com/hyper0x/Golang_Puzzlers

2019-03-03

打卡

展开

墨水里的鱼
2018-11-30

 1

如何初始化reflect.Type？reflect.TypeOf(1) reflect.TypeOf("a") 只能这样吗?

渺小de尘埃
2018-11-01

 1

当一个结构体里的字段是sync.map类型的，怎么json序列化呢？

作者回复: 既然要序列化了就用不着同步了吧，用个普通map倒腾一下呗。或者你再包装一下，自

定义序列化过程。

唐大少在路...
2019-05-11



班门弄斧，其实有个细节帮老师丰富一下：
两个原生map的定义为 map[interface{}]*entry
其中的entry为一个只包含一个unsafe.pointer的结构体
这里之所以value设置为指针类型，个人感觉就是为了在dirtry重建的时候直接把read里面
这个entry的地址copy到dirty里面，这样当read中对entry里面的pointer执行原子替换…
展开

cloud
2019-03-09



这个脏字典让我想起了mysql的刷脏页。
给老师点赞。

