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你好，我是郝林，今天我们继续来分享并发安全字典 sync.Map 的内容。

我们在上一篇文章中谈到了，由于并发安全字典提供的方法涉及的键和值的类型都是

interface{}，所以我们在调用这些方法的时候，往往还需要对键和值的实际类型进行检

查。

这里大致有两个方案。我们上一篇文章中提到了第一种方案，在编码时就完全确定键和值的

类型，然后利用 Go 语言的编译器帮我们做检查。

这样做很方便，不是吗？不过，虽然方便，但是却让这样的字典类型缺少了一些灵活性。
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如果我们还需要一个键类型为uint32并发安全字典的话，那就不得不再如法炮制地写一遍

代码了。因此，在需求多样化之后，工作量反而更大，甚至会产生很多雷同的代码。

知识扩展

问题 1：怎样保证并发安全字典中的键和值的类型正确性？（方案二）

那么，如果我们既想保持sync.Map类型原有的灵活性，又想约束键和值的类型，那么应该

怎样做呢？这就涉及了第二个方案。

在第二种方案中，我们封装的结构体类型的所有方法，都可以与sync.Map类型的方法完全

一致（包括方法名称和方法签名）。

不过，在这些方法中，我们就需要添加一些做类型检查的代码了。另外，这样并发安全字典

的键类型和值类型，必须在初始化的时候就完全确定。并且，这种情况下，我们必须先要保

证键的类型是可比较的。

所以在设计这样的结构体类型的时候，只包含sync.Map类型的字段就不够了。

比如：

这里ConcurrentMap类型代表的是：可自定义键类型和值类型的并发安全字典。这个类型

同样有一个sync.Map类型的字段m，代表着其内部使用的并发安全字典。

另外，它的字段keyType和valueType，分别用于保存键类型和值类型。这两个字段的类

型都是reflect.Type，我们可称之为反射类型。
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type ConcurrentMap struct {
 m         sync.Map
 keyType   reflect.Type
 valueType reflect.Type
}
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这个类型可以代表 Go 语言的任何数据类型。并且，这个类型的值也非常容易获得：通过调

用reflect.TypeOf函数并把某个样本值传入即可。

调用表达式reflect.TypeOf(int(123))的结果值，就代表了int类型的反射类型值。

我们现在来看一看ConcurrentMap类型方法应该怎么写。

先说Load方法，这个方法接受一个interface{}类型的参数key，参数key代表了某个键

的值。

因此，当我们根据 ConcurrentMap 在m字段的值中查找键值对的时候，就必须保证

ConcurrentMap 的类型是正确的。由于反射类型值之间可以直接使用操作符==或!=进行

判等，所以这里的类型检查代码非常简单。

我们把一个接口类型值传入reflect.TypeOf函数，就可以得到与这个值的实际类型对应

的反射类型值。

因此，如果参数值的反射类型与keyType字段代表的反射类型不相等，那么我们就忽略后

续操作，并直接返回。

这时，Load方法的第一个结果value的值为nil，而第二个结果ok的值为false。这完全

符合Load方法原本的含义。

再来说Store方法。Store方法接受两个参数key和value，它们的类型也都是

interface{}。因此，我们的类型检查应该针对它们来做。
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func (cMap *ConcurrentMap) Load(key interface{}) (value interface{}, ok bool) {
 if reflect.TypeOf(key) != cMap.keyType {
  return
 }
 return cMap.m.Load(key)
}
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这里的类型检查代码与Load方法中的代码很类似，不同的是对检查结果的处理措施。当参

数key或value的实际类型不符合要求时，Store方法会立即引发 panic。

这主要是由于Store方法没有结果声明，所以在参数值有问题的时候，它无法通过比较平和

的方式告知调用方。不过，这也是符合Store方法的原本含义的。

如果你不想这么做，也是可以的，那么就需要为Store方法添加一个error类型的结果。

并且，在发现参数值类型不正确的时候，让它直接返回相应的error类型值，而不是引发

panic。要知道，这里展示的只一个参考实现，你可以根据实际的应用场景去做优化和改

进。

至于与ConcurrentMap类型相关的其他方法和函数，我在这里就不展示了。它们在类型检

查方式和处理流程上并没有特别之处。你可以在 demo72.go 文件中看到这些代码。

稍微总结一下。第一种方案适用于我们可以完全确定键和值具体类型的情况。在这种情况

下，我们可以利用 Go 语言编译器去做类型检查，并用类型断言表达式作为辅助，就像

IntStrMap那样。

在第二种方案中，我们无需在程序运行之前就明确键和值的类型，只要在初始化并发安全字

典的时候，动态地给定它们就可以了。这里主要需要用到reflect包中的函数和数据类

型，外加一些简单的判等操作。

第一种方案存在一个很明显的缺陷，那就是无法灵活地改变字典的键和值的类型。一旦需求

出现多样化，编码的工作量就会随之而来。
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func (cMap *ConcurrentMap) Store(key, value interface{}) {
 if reflect.TypeOf(key) != cMap.keyType {
  panic(fmt.Errorf("wrong key type: %v", reflect.TypeOf(key)))
 }
 if reflect.TypeOf(value) != cMap.valueType {
  panic(fmt.Errorf("wrong value type: %v", reflect.TypeOf(value)))
 }
 cMap.m.Store(key, value)
}
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第二种方案很好地弥补了这一缺陷，但是，那些反射操作或多或少都会降低程序的性能。我

们往往需要根据实际的应用场景，通过严谨且一致的测试，来获得和比较程序的各项指标，

并以此作为方案选择的重要依据之一。

问题 2：并发安全字典如何做到尽量避免使用锁？

sync.Map类型在内部使用了大量的原子操作来存取键和值，并使用了两个原生的map作为

存储介质。

其中一个原生map被存在了sync.Map的read字段中，该字段是sync/atomic.Value类

型的。 这个原生字典可以被看作一个快照，它总会在条件满足时，去重新保存所属的

sync.Map值中包含的所有键值对。

为了描述方便，我们在后面简称它为只读字典。不过，只读字典虽然不会增减其中的键，但

却允许变更其中的键所对应的值。所以，它并不是传统意义上的快照，它的只读特性只是对

于其中键的集合而言的。

由read字段的类型可知，sync.Map在替换只读字典的时候根本用不着锁。另外，这个只

读字典在存储键值对的时候，还在值之上封装了一层。

它先把值转换为了unsafe.Pointer类型的值，然后再把后者封装，并储存在其中的原生

字典中。如此一来，在变更某个键所对应的值的时候，就也可以使用原子操作了。

sync.Map中的另一个原生字典由它的dirty字段代表。 它存储键值对的方式与read字段

中的原生字典一致，它的键类型也是interface{}，并且同样是把值先做转换和封装后再

进行储存的。我们暂且把它称为脏字典。

注意，脏字典和只读字典如果都存有同一个键值对，那么这里的两个键指的肯定是同一个基

本值，对于两个值来说也是如此。

正如前文所述，这两个字典在存储键和值的时候都只会存入它们的某个指针，而不是基本

值。

sync.Map在查找指定的键所对应的值的时候，总会先去只读字典中寻找，并不需要锁定互

斥锁。只有当确定“只读字典中没有，但脏字典中可能会有这个键”的时候，它才会在锁的



保护下去访问脏字典。

相对应的，sync.Map在存储键值对的时候，只要只读字典中已存有这个键，并且该键值对

未被标记为“已删除”，就会把新值存到里面并直接返回，这种情况下也不需要用到锁。

否则，它才会在锁的保护下把键值对存储到脏字典中。这个时候，该键值对的“已删除”标

记会被抹去。

sync.Map 中的 read 与 dirty

顺便说一句，只有当一个键值对应该被删除，但却仍然存在于只读字典中的时候，才会被用

标记为“已删除”的方式进行逻辑删除，而不会直接被物理删除。

这种情况会在重建脏字典以后的一段时间内出现。不过，过不了多久，它们就会被真正删除

掉。在查找和遍历键值对的时候，已被逻辑删除的键值对永远会被无视。

对于删除键值对，sync.Map会先去检查只读字典中是否有对应的键。如果没有，脏字典中

可能有，那么它就会在锁的保护下，试图从脏字典中删掉该键值对。
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最后，sync.Map会把该键值对中指向值的那个指针置为nil，这是另一种逻辑删除的方

式。

除此之外，还有一个细节需要注意，只读字典和脏字典之间是会互相转换的。在脏字典中查

找键值对次数足够多的时候，sync.Map会把脏字典直接作为只读字典，保存在它的read

字段中，然后把代表脏字典的dirty字段的值置为nil。

在这之后，一旦再有新的键值对存入，它就会依据只读字典去重建脏字典。这个时候，它会

把只读字典中已被逻辑删除的键值对过滤掉。理所当然，这些转换操作肯定都需要在锁的保

护下进行。

 

sync.Map 中 read 与 dirty 的互换

综上所述，sync.Map的只读字典和脏字典中的键值对集合，并不是实时同步的，它们在某

些时间段内可能会有不同。



由于只读字典中键的集合不能被改变，所以其中的键值对有时候可能是不全的。相反，脏字

典中的键值对集合总是完全的，并且其中不会包含已被逻辑删除的键值对。

因此，可以看出，在读操作有很多但写操作却很少的情况下，并发安全字典的性能往往会更

好。在几个写操作当中，新增键值对的操作对并发安全字典的性能影响是最大的，其次是删

除操作，最后才是修改操作。

如果被操作的键值对已经存在于sync.Map的只读字典中，并且没有被逻辑删除，那么修改

它并不会使用到锁，对其性能的影响就会很小。

总结

这两篇文章中，我们讨论了sync.Map类型，并谈到了怎样保证并发安全字典中的键和值的

类型正确性。

为了进一步明确并发安全字典中键值的实际类型，这里大致有两种方案可选。

这两种方案各有利弊，前一种方案在扩展性方面有所欠缺，而后一种方案通常会影响到程序

的性能。在实际使用的时候，我们一般都需要通过客观的测试来帮助决策。

另外，在有些时候，与单纯使用原生字典和互斥锁的方案相比，使用sync.Map可以显著地

减少锁的争用。sync.Map本身确实也用到了锁，但是，它会尽可能地避免使用锁。

这就要说到sync.Map对其持有两个原生字典的巧妙使用了。这两个原生字典一个被称为只

读字典，另一个被称为脏字典。通过对它们的分析，我们知道了并发安全字典的适用场景，

以及每种操作对其性能的影响程度。

思考题

今天的思考题是：关于保证并发安全字典中的键和值的类型正确性，你还能想到其他的方案

吗？

其中一种方案是，在编码时就完全确定键和值的类型，然后利用 Go 语言的编译器帮我们

做检查。

另一种方案是，接受动态的类型设置，并在程序运行的时候通过反射操作进行检查。
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