
36 | unicode与字符编码
2018-11-02 郝林

Go语言核心36讲 进入课程

讲述：黄洲君
时长 16:45 大小 5.76M

到目前为止，我们已经一起陆陆续续地学完了 Go 语言中那些最重要也最有特色的概念、语

法和编程方式。我对于它们非常喜爱，简直可以用如数家珍来形容了。

在开始今天的内容之前，我先来做一个简单的总结。

Go 语言经典知识总结

基于混合线程的并发编程模型自然不必多说。

在数据类型方面有：



基于底层数组的切片；



 下载APP 

在语法方面有：

除了这些，我们还一起讨论了测试 Go 程序的主要方式。这涉及了 Go 语言自带的程序测试

套件，相关的概念和工具包括：

另外，就在前不久，我还为你深入讲解了 Go 语言提供的那些同步工具。它们也是 Go 语言

并发编程工具箱中不可或缺的一部分。这包括了：

以及Go 语言特有的一些数据类型，即：

用来传递数据的通道；

作为一等类型的函数；

可实现面向对象的结构体；

能无侵入实现的接口等。

异步编程神器go语句；

函数的最后关卡defer语句；

可做类型判断的switch语句；

多通道操作利器select语句；

非常有特色的异常处理函数panic和recover。

独立的测试源码文件；

三种功用不同的测试函数；

专用的testing代码包；

功能强大的go test命令。

经典的互斥锁；

读写锁；

条件变量；

原子操作。

毫不夸张地说，如果你真正地掌握了上述这些知识，那么就已经获得了 Go 语言编程的精

髓。

在这之后，你再去研读 Go 语言标准库和那些优秀第三方库中的代码的时候，就一定会事半

功倍。同时，在使用 Go 语言编写软件的时候，你肯定也会如鱼得水、游刃有余的。

我用了大量的篇幅讲解了 Go 语言中最核心的知识点，真心希望你已经搞懂了这些内容。

在后面的日子里，我会与你一起去探究 Go 语言标准库中最常用的那些代码包，弄清它们

的用法、了解它们的机理。当然了，我还会顺便讲一讲那些必备的周边知识。

前导内容 1：Go 语言字符编码基础

首先，让我们来关注字符编码方面的问题。这应该是在计算机软件领域中非常基础的一个问

题了。

我在前面说过，Go 语言中的标识符可以包含“任何 Unicode 编码可以表示的字母字

符”。我还说过，虽然我们可以直接把一个整数值转换为一个string类型的值。

但是，被转换的整数值应该可以代表一个有效的 Unicode 代码点，否则转换的结果就将会

是"�"，即：一个仅由高亮的问号组成的字符串值。

另外，当一个string类型的值被转换为[]rune类型值的时候，其中的字符串会被拆分成

一个一个的 Unicode 字符。

显然，Go 语言采用的字符编码方案从属于 Unicode 编码规范。更确切地说，Go 语言的代

码正是由 Unicode 字符组成的。Go 语言的所有源代码，都必须按照 Unicode 编码规范中

的 UTF-8 编码格式进行编码。

单次执行小助手sync.Once；

临时对象池sync.Pool；

帮助我们实现多 goroutine 协作流程的sync.WaitGroup、context.Context；

一种高效的并发安全字典sync.Map。

换句话说，Go 语言的源码文件必须使用 UTF-8 编码格式进行存储。如果源码文件中出现

了非 UTF-8 编码的字符，那么在构建、安装以及运行的时候，go 命令就会报告错

误“illegal UTF-8 encoding”。

在这里，我们首先要对 Unicode 编码规范有所了解。不过，在讲述它之前，我先来简要地

介绍一下 ASCII 编码。

前导内容 2： ASCII 编码

ASCII 是英文“American Standard Code for Information Interchange”的缩写，中文

译为美国信息交换标准代码。它是由美国国家标准学会（ANSI）制定的单字节字符编码方

案，可用于基于文本的数据交换。

它最初是美国的国家标准，后又被国际标准化组织（ISO）定为国际标准，称为 ISO 646

标准，并适用于所有的拉丁文字字母。

ASCII 编码方案使用单个字节（byte）的二进制数来编码一个字符。标准的 ASCII 编码用

一个字节的最高比特（bit）位作为奇偶校验位，而扩展的 ASCII 编码则将此位也用于表示

字符。ASCII 编码支持的可打印字符和控制字符的集合也被叫做 ASCII 编码集。

我们所说的 Unicode 编码规范，实际上是另一个更加通用的、针对书面字符和文本的字符

编码标准。它为世界上现存的所有自然语言中的每一个字符，都设定了一个唯一的二进制编

码。

它定义了不同自然语言的文本数据在国际间交换的统一方式，并为全球化软件创建了一个重

要的基础。

Unicode 编码规范以 ASCII 编码集为出发点，并突破了 ASCII 只能对拉丁字母进行编码的

限制。它不但提供了可以对世界上超过百万的字符进行编码的能力，还支持所有已知的转义

序列和控制代码。

我们都知道，在计算机系统的内部，抽象的字符会被编码为整数。这些整数的范围被称为代

码空间。在代码空间之内，每一个特定的整数都被称为一个代码点。

一个受支持的抽象字符会被映射并分配给某个特定的代码点，反过来讲，一个代码点总是可

以被看成一个被编码的字符。

Unicode 编码规范通常使用十六进制表示法来表示 Unicode 代码点的整数值，并使

用“U+”作为前缀。比如，英文字母字符“a”的 Unicode 代码点是 U+0061。在

Unicode 编码规范中，一个字符能且只能由与它对应的那个代码点表示。

Unicode 编码规范现在的最新版本是 11.0，并会于 2019 年 3 月发布 12.0 版本。而 Go

语言从 1.10 版本开始，已经对 Unicode 的 10.0 版本提供了全面的支持。对于绝大多数的

应用场景来说，这已经完全够用了。

Unicode 编码规范提供了三种不同的编码格式，即：UTF-8、UTF-16 和 UTF-32。其中的

UTF 是 UCS Transformation Format 的缩写。而 UCS 又是 Universal Character Set 的

缩写，但也可以代表 Unicode Character Set。所以，UTF 也可以被翻译为 Unicode 转换

格式。它代表的是字符与字节序列之间的转换方式。

在这几种编码格式的名称中，“-”右边的整数的含义是，以多少个比特位作为一个编码单

元。以 UTF-8 为例，它会以 8 个比特，也就是一个字节，作为一个编码单元。并且，它与

标准的 ASCII 编码是完全兼容的。也就是说，在 [0x00, 0x7F] 的范围内，这两种编码表示

的字符都是相同的。这也是 UTF-8 编码格式的一个巨大优势。

UTF-8 是一种可变宽的编码方案。换句话说，它会用一个或多个字节的二进制数来表示某

个字符，最多使用四个字节。比如，对于一个英文字符，它仅用一个字节的二进制数就可以

表示，而对于一个中文字符，它需要使用三个字节才能够表示。不论怎样，一个受支持的字

符总是可以由 UTF-8 编码为一个字节序列。以下会简称后者为 UTF-8 编码值。

现在，在你初步地了解了这些知识之后，请认真地思考并回答下面的问题。别担心，我会在

后面进一步阐述 Unicode、UTF-8 以及 Go 语言对它们的运用。

问题：一个string类型的值在底层是怎样被表达的？

典型回答 是在底层，一个string类型的值是由一系列相对应的 Unicode 代码点的 UTF-8

编码值来表达的。

问题解析

在 Go 语言中，一个string类型的值既可以被拆分为一个包含多个字符的序列，也可以被

拆分为一个包含多个字节的序列。

前者可以由一个以rune为元素类型的切片来表示，而后者则可以由一个以byte为元素类型

的切片代表。

rune是 Go 语言特有的一个基本数据类型，它的一个值就代表一个字符，即：一个

Unicode 字符。

比如，'G'、'o'、'爱'、'好'、'者'代表的就都是一个 Unicode 字符。

我们已经知道，UTF-8 编码方案会把一个 Unicode 字符编码为一个长度在 [1, 4] 范围内的

字节序列。所以，一个rune类型的值也可以由一个或多个字节来代表。

根据rune类型的声明可知，它实际上就是int32类型的一个别名类型。也就是说，一个

rune类型的值会由四个字节宽度的空间来存储。它的存储空间总是能够存下一个 UTF-8 编

码值。

一个rune类型的值在底层其实就是一个 UTF-8 编码值。前者是（便于我们人类理解的）外

部展现，后者是（便于计算机系统理解的）内在表达。

请看下面的代码：

字符串值"Go爱好者"如果被转换为[]rune类型的值的话，其中的每一个字符（不论是英

文字符还是中文字符）就都会独立成为一个rune类型的元素值。因此，这段代码打印出的

第二行内容就会如下所示：

1 type rune = int32

复制代码

1

2

3

4

5

str := "Go 爱好者 "
fmt.Printf("The string: %q\n", str)
fmt.Printf(" => runes(char): %q\n", []rune(str))
fmt.Printf(" => runes(hex): %x\n", []rune(str))
fmt.Printf(" => bytes(hex): [% x]\n", []byte(str))

复制代码

又由于，每个rune类型的值在底层都是由一个 UTF-8 编码值来表达的，所以我们可以换一

种方式来展现这个字符序列：

可以看到，五个十六进制数与五个字符相对应。很明显，前两个十六进制数47和6f代表的

整数都比较小，它们分别表示字符'G'和'o'。

因为它们都是英文字符，所以对应的 UTF-8 编码值用一个字节表达就足够了。一个字节的

编码值被转换为整数之后，不会大到哪里去。

而后三个十六进制数7231、597d和8005都相对较大，它们分别表示中文字

符'爱'、'好'和'者'。

这些中文字符对应的 UTF-8 编码值，都需要使用三个字节来表达。所以，这三个数就是把

对应的三个字节的编码值，转换为整数后得到的结果。

我们还可以进一步地拆分，把每个字符的 UTF-8 编码值都拆成相应的字节序列。上述代码

中的第五行就是这么做的。它会得到如下的输出：

这里得到的字节切片比前面的字符切片明显长了很多。这正是因为一个中文字符的 UTF-8

编码值需要用三个字节来表达。

1 => runes(char): ['G' 'o' '爱' '好' '者']

复制代码

1 => runes(hex): [47 6f 7231 597d 8005]

复制代码

1 => bytes(hex): [47 6f e7 88 b1 e5 a5 bd e8 80 85]

复制代码

这个字节切片的前两个元素值与字符切片的前两个元素值是一致的，而在这之后，前者的每

三个元素值才对应字符切片中的一个元素值。

注意，对于一个多字节的 UTF-8 编码值来说，我们可以把它当做一个整体转换为单一的整

数，也可以先把它拆成字节序列，再把每个字节分别转换为一个整数，从而得到多个整数。

这两种表示法展现出来的内容往往会很不一样。比如，对于中文字符'爱'来说，它的 UTF-

8 编码值可以展现为单一的整数7231，也可以展现为三个整数，即：e7、88和b1。

（字符串值的底层表示）

总之，一个string类型的值会由若干个 Unicode 字符组成，每个 Unicode 字符都可以由

一个rune类型的值来承载。

这些字符在底层都会被转换为 UTF-8 编码值，而这些 UTF-8 编码值又会以字节序列的形式

表达和存储。因此，一个string类型的值在底层就是一个能够表达若干个 UTF-8 编码值

的字节序列。

知识扩展

问题 1：使用带有range子句的for语句遍历字符串值的时候应该注意什么？

带有range子句的for语句会先把被遍历的字符串值拆成一个字节序列，然后再试图找出这

个字节序列中包含的每一个 UTF-8 编码值，或者说每一个 Unicode 字符。

这样的for语句可以为两个迭代变量赋值。如果存在两个迭代变量，那么赋给第一个变量的

值，就将会是当前字节序列中的某个 UTF-8 编码值的第一个字节所对应的那个索引值。

而赋给第二个变量的值，则是这个 UTF-8 编码值代表的那个 Unicode 字符，其类型会是

rune。

例如，有这么几行代码：

这里被遍历的字符串值是"Go爱好者"。在每次迭代的时候，这段代码都会打印出两个迭代

变量的值，以及第二个值的字节序列形式。完整的打印内容如下：

第一行内容中的关键信息有0、'G'和[47]。这是由于这个字符串值中的第一个 Unicode

字符是'G'。该字符是一个单字节字符，并且由相应的字节序列中的第一个字节表达。这个

字节的十六进制表示为47。

第二行展示的内容与之类似，即：第二个 Unicode 字符是'o'，由字节序列中的第二个字

节表达，其十六进制表示为6f。

1

2

3

4

str := "Go 爱好者 "
for i, c := range str {
 fmt.Printf("%d: %q [% x]\n", i, c, []byte(string(c)))
}

复制代码

1

2

3

4

5

0: 'G' [47]
1: 'o' [6f]
2: '爱' [e7 88 b1]
5: '好' [e5 a5 bd]
8: '者' [e8 80 85]

复制代码

再往下看，第三行展示的是'爱'，也是第三个 Unicode 字符。因为它是一个中文字符，所

以由字节序列中的第三、四、五个字节共同表达，其十六进制表示也不再是单一的整数，而

是e7、88和b1组成的序列。

下面要注意了，正是因为'爱'是由三个字节共同表达的，所以第四个 Unicode 字符'好'对

应的索引值并不是3，而是2加3后得到的5。

这里的2代表的是'爱'对应的索引值，而3代表的则是'爱'对应的 UTF-8 编码值的宽度。

对于这个字符串值中的最后一个字符'者'来说也是类似的，因此，它对应的索引值是8。

由此可以看出，这样的for语句可以逐一地迭代出字符串值里的每个 Unicode 字符。但

是，相邻的 Unicode 字符的索引值并不一定是连续的。这取决于前一个 Unicode 字符是

否为单字节字符。

正因为如此，如果我们想得到其中某个 Unicode 字符对应的 UTF-8 编码值的宽度，就可

以用下一个字符的索引值减去当前字符的索引值。

初学者可能会对for语句的这种行为感到困惑，因为它给予两个迭代变量的值看起来并不总

是对应的。不过，一旦我们了解了它的内在机制就会拨云见日、豁然开朗。

总结

我们今天把目光聚焦在了 Unicode 编码规范、UTF-8 编码格式，以及 Go 语言对字符串和

字符的相关处理方式上。

Go 语言的代码是由 Unicode 字符组成的，它们都必须由 Unicode 编码规范中的 UTF-8

编码格式进行编码并存储，否则就会导致 go 命令的报错。

Unicode 编码规范中的编码格式定义的是：字符与字节序列之间的转换方式。其中的 UTF-

8 是一种可变宽的编码方案。

它会用一个或多个字节的二进制数来表示某个字符，最多使用四个字节。一个受支持的字

符，总是可以由 UTF-8 编码为一个字节序列，后者也可以被称为 UTF-8 编码值。

Go 语言中的一个string类型值会由若干个 Unicode 字符组成，每个 Unicode 字符都可

以由一个rune类型的值来承载。

这些字符在底层都会被转换为 UTF-8 编码值，而这些 UTF-8 编码值又会以字节序列的形式

表达和存储。因此，一个string类型的值在底层就是一个能够表达若干个 UTF-8 编码值

的字节序列。

初学者可能会对带有range子句的for语句遍历字符串值的行为感到困惑，因为它给予两个

迭代变量的值看起来并不总是对应的。但事实并非如此。

这样的for语句会先把被遍历的字符串值拆成一个字节序列，然后再试图找出这个字节序列

中包含的每一个 UTF-8 编码值，或者说每一个 Unicode 字符。

相邻的 Unicode 字符的索引值并不一定是连续的。这取决于前一个 Unicode 字符是否为

单字节字符。一旦我们清楚了这些内在机制就不会再困惑了。

对于 Go 语言来说，Unicode 编码规范和 UTF-8 编码格式算是基础之一了。我们应该了解

到它们对 Go 语言的重要性。这对于正确理解 Go 语言中的相关数据类型以及日后的相关程

序编写都会很有好处。

思考题

今天的思考题是：判断一个 Unicode 字符是否为单字节字符通常有几种方式？

戳此查看 Go 语言专栏文章配套详细代码。

https://github.com/hyper0x/Golang_Puzzlers

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 35 | 并发安全字典sync.Map (下)

下一篇 37 | strings包与字符串操作

wade
2018-11-07

 7

而后三个十六进制数7231、597d和8005都相对较大，它们分别表示中文字
符'爱'、'好'和'者'。这些中文字符对应的 UTF-8 编码值，都需要使用三个字节来表达。所
以，这三个数就是把对应的三个字节来表达。所以，这三个数就是把对应的三个字节的编
码值，转换为整数后得到的结果。
 …
展开

冰激凌的眼...
2018-11-05

 7

src文件编码是utf8

精选留言 (12)  写留言

string是utf8编码的mb，len(string)是字节的长度
string可以转化为[]rune，unicode码，32bit的数字，当字符看，len([]rune)为字符长度
string可以转化为[]byte，utf8编码字节串，len([]byte)和len(string)是一样的
for range的时候，迭代出首字节下标和rune，首字符下标可能跳跃(视上一个字符编码长…
展开

冰激凌的眼...
2018-11-02

 3

看rune大小
转成byte看长度
加个小尾巴,range看间隔

展开

韡WEI
2018-11-15

 2

rune怎么翻译？有道查的：神秘的记号。为什么这么命名这个类型？有没有什么故事？

Gryllus
2018-11-02

 2

终于追上了进度

展开

作者回复: 🐂

Andylee
2018-12-16

 1

这篇文章把unicode和utf8区分的不是很清楚，正如上面有个网友说的rune切变16进制输
出是字符的unicode的码点，而byte切片输出的才是utf8的编码

展开

作者回复: 这么说没错，不过rune在底层也是字节串。

jacke
2019-05-12



string 底层是[]byte数组，我的疑问是：例子里面看出来，string转化为tune的时候，
tune里面保存的是utf-8的代码点数据，string转化为[]byte的时候保存的是utf-8代码点对
应的字节序。
上面这些转化逻辑在哪里实现的？fmt.print里面？看了fmt.print找不到,string转为[]byte
的实现函数stringtoslicebyte也没看到这部分逻辑

展开

作者回复: 你要知道，string 类型的值本身就是由 UTF-8 编码的一个个字节组成的，同时也可以

看做是由一个个 Unicode 字符组成的。这不是在转换的时候才去做的。

你既然已经找到了 stringtoslicebyte 函数，那就应该再去看看那个源码文件中的其他代码。可以

从 rawstring 函数看起。等都看完了你就应该明白了。

🤔
2019-04-22



+ isrunesingle.go

```go 
package show_rune_length 
 …
展开

作者回复: 可以用 unicode/utf8 代码包中的 RuneCount 函数。

Geek_1ed70...
2019-03-14



您是说 一个汉字的rune值 在计算机底层会被转成utf-8编码来 给计算机读取是吗? 
 
比如 一个"严"字 unicode为20005(十进制), utf-8编码是11100100 10111000
10100101(二进制),十进制就是14989477 , 我们平时打印只能看到 20005 它是什么时候转
成14989477的啊

展开



作者回复: 存储的时候会以二进制的形式。另外如果你要看Unicode代码点。你这么转换比较混

乱。你可以参看fmt包的文档，看看怎样才能把对应的进制值打印出来。

melody_fu...
2019-03-06



有点小晕，想请问下 rune 类型在内存的表现形式是 unicde 编码值，还是utf-8 编码值，
你所说的底层指的是？

展开

作者回复: rune的底层表达使用的是Unicode代码点。 

但是，底层的存储用UTF-8编码。 

 

表达和存储这两者的关系你能分清楚吧？

王小勃
2019-01-27



打卡： 
1、len函数对于字符串，得到的是字节长度 
2、utf-8 我以前看到的资料是 1-6个字节的可变长编码，go如果用rune，对于超过4个字
节的utf-8字符怎么处理？

展开

作者回复: 目前utf-8是1~4个字节的。

ryon
2018-11-05



这章讲得还可以

展开


