注解（会用，知道注解是怎么回事，后续的框架使用中，遇到框架的注解能正确使用就行）

什么是注解：这是一种标注，单从解释的层面来看和注释类似；和注释不同的地方在于，其可以被加入到编译后的字节码文件中，并且在程序执行过程中获得标注的内容。

是目前绝大部分轻量级框架普遍采用的，用于替代繁琐配置的一种功能。

Annotation：

ElementType（枚举）：

@Target用于标注注解可以放在类的哪个成员上

由ElementType枚举提供的属性来确定

RetentionPolicy（枚举）：

@Retention用于约束被注解的注解，在编译后，该注解可以存在的情况。

RetentionPolicy

SOURCE：不会被编译进class文件，只会存在于源文件

CLASS：（默认），会被编译进class，但是无法再jvm运行过程中获取。

RUNTIME：会被编译进class，同时可以在jvm执行中获取（一般自定义注解，都会用这个）

元注解：用于对自定义注解，进行注解的注解

自定义注解：

语法：在interface关键字前，加@符号

方法/属性

一个抽象方法，同时有返回值

那么抽象方法的方法名，即注解的属性名，返回值约束了注解的属性类型

如果不想写属性名，默认的value属性无需显式给与属性名

可以用default关键字指定默认值

如果有多个属性，value也必须显式的声明

内置注解：

@Override用于标注方法是被重写的方法

@Deprecated用于标注方法是被废弃的，被废弃的方法并非不可用，只是不建议用

@SuppressWarnings用于静默警告（黄线）提示，可以在局部变量，成员变量，方法，构造，类等所有位置添加，加在哪，那个区域的警告静默，但是可以指定静默的类型

@FunctionalInterface用于注解函数式接口，即接口当中只有一个抽象方法的，叫函数式接口，但是函数式接口中可以有静态方法和默认方法

@SafeVarargs：功能类似@SuppressWarnings，但是只作用于最终方法，只针对类型未验证的情况

@Repeatable：一个元注解，可以在一个类上，叠加多个同样的注解

反射（了解，可以不求甚解）
如何在程序运行过程当中，动态加载实例，并对其赋值
加载类
通过类获取
通过实例获取
通过类全名获取
创建实例
直接获取实例（默认使用空参构造创建）
通过指定构造创建实例
操作属性
操作方法
获取注解：注解在什么地方，就要获取对应成员的实例
针对类的私有化成员操作
setAccessible私有成员的实例，调用该方法，并提供参数true即可无视访问权限限制，直接访问其地址。
构造，方法，属性
