1. 线程和进程：
(1) 线程：CPU管理分配资源的最小目标单位，是真正在CPU上运行的
(2) 进程：是一个应用程序占用一个进程，一个进程包含若干的线程
2. 多线程应用的优势
(1) 执行效率高
(2) 内存共享
(3) 每一个线程的方法（执行）栈是独立的
3. 注意
(1) 线程的执行，首选需要CPU分配执行资源
(2) main方法是主线程调用栈的入口
(3) Run方法是子线程调用栈的入口
4. 线程的分类
(1) 守护线程：用户线程执行完毕后，守护线程无论是否执行完毕，立即关闭
(2) 用户线程：主要讨论的线程种类，用户线程执行完毕后，JVM才会关闭
5. 线程创建的两种方式：
(1) 继承Thread类，重写run方法
(2) 实现Runnable接口，实现run方法
(3) 创建线程的实例
1 继承Thread类，直接创建其对象
2 实现Runnable接口，需要创建Thread实例，并提供构造参数（Runnable接口实现类）
(4) 给线程指定线程名（了解）
1 线程的实例
2 构造的参数
3 默认Thread-N
(5) 线程的启动：
1 不是调用run方法
2 调用线程实例的start方法
(6) 注意：
1 线程的启动是有顺序的，但是并不意味着他的执行也是按照这个顺序
2 Run()执行结束，线程生命周期结束
3 一个线程只能启动一次
4 所有的线程中，只有一个会被选为当前可运行线程，但是这个顺序是没有保障的
5 线程可以调度，在某种意义上，影响线程的执行。
(7) 线程的生命周期
[image: ]
1 初识线程同步和线程栈之间数据共享（线程通讯）
1) 使用构造或者单例等等方式，向多个线程提供同一个实例的地址
2) 使用关键字synchronized，使当前方法或者代码块处于同步状态。同一时刻只有一个线程可以操作同步区域
2 注意：
1) 线程并不是调用了start方法后就立即执行的
2) 被CPU选中的线程才可以从可运行状态，变为运行状态
3) 而没有被CPU选择的线程，将继续停留在可运行状态，直到被选中为止。
3 等待：
1) 等待---->唤醒
2) [bookmark: _GoBack]必须在同步环境中才可以等待或者唤醒
3) 等待的生命周期
a. 线程准备就绪
b. 开始执行（运行状态）
c. 争夺同步锁（只有获得锁的线程可以执行，其他线程等待）
d. 获得同步锁，执行同步区域
e. 调用等待（线程停止，等待唤醒）
f. 线程进入等待后会释放同步锁并进入可执行状态，没有等待的其他线程争夺同步锁
g. 执行唤醒
h. 所有处于等待状态的线程被同时唤醒
i. 被唤醒的线程会进入运行状态，再次争夺同步锁
j. 获得持锁的线程，将继续执行等待之后的内容，执行完毕后释放锁。
image1.png
RfttpEE

otherwise
blocked

AETRS " ETRS

LULLEL Running

XSEE FHmE
blocked in > blocked in
lock poll natiyD wait poll

notifyAll)




