
从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

从Docker到Kubernetes 第11周

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

法律声明

【声明】本视频和幻灯片为炼数成金网络课程的教学资料

，所有资料只能在课程内使用，不得在课程以外范围散

播，违者将可能被追究法律和经济责任。

课程详情访问炼数成金培训网站

http://edu.dataguru.cn

http://edu.dataguru.cn/

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

第十一课kubernetes 分布式集群架构

• Kubernetes分布式集群架构
• Kubernetes 集群架构例子

• 集群运维常见问题

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

Kubernetes分布式集群架构

服务A

服务A

服务B

服务B

服务C

服务C

服务注册表

负载均衡器 传统的架构

• 总体上零散，缺乏架构的整体性与系统性

• 服务注册表的方式，依然是入侵性的，缺乏
直观性

• “服务”这个概念本身并没有被作为架构的
一等公民

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

Kubernetes分布式集群架构

传统的架构

• 程序架构跟运行时态是相对分离的，无法从
根本上保证分布式架构的最初设计

• 分布式规模部署的难题从未真正彻底解决

X86

X86 X86

X86

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

Kubernetes分布式集群架构

Service A
(TCP)

Service B
(TCP)

Service C
(TCP)

Service D
(TCP)

Only
Service

No Registy
& Other
Compent

No
Deployment

Problem

No
Maintainance

Problem

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

Kubernetes分布式集群架构

服务注册和服务发现问题怎么解决的？

每个服务分配一个不变的虚拟IP+端口

 系统env环境变量里有每个服务的服务名称到IP的映射

client = new Predis\Client([

 'scheme' => 'tcp',

 'host' => getenv('REDIS_MASTER_SERVICE_HOST') ,

 'port' => $read_port,

]);

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

Kubernetes分布式集群架构

服务的负载均衡问题怎么解决的？

每个节点上都有一个软件实现的服务代理来实现负载均衡

Service
A

Kube-proxy

Pod

Pod

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

Kubernetes分布式集群架构

服务的规模部署问题怎么解决的？

目标导向的做法：确定部署实例数，系统自动调度

Service
A Pod

Pod Pod

3个实例

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

Kubernetes分布式集群架构

服务运维问题如何解决的？

自动监控、自我修复

Service
A

Pod

Pod Pod

3个实例

Pod

重新调度

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

Kubernetes分布式集群架构

架构建议

Service
A

Service
B

Service
C

Zookeeper/Etcd

集中配置，并且实时配置实施生效

无状态服务

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

Kubernetes 集群架构例子

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

Kubernetes 集群架构例子

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

Kubernetes 集群架构例子

1.创建redis-master Pod和服务

我们可以先定义Service，然后定义一个RC来
创建和控制相关联的Pods，或者先定义RC来创建
Pods，然后定义与之关联的Service，这两种方式
最终的结果都一样，这里我们采用后一种思路。

redis-master-controller.yaml，下面给出了该文件的完整内容：

apiVersion: v1
kind: ReplicationController
metadata:
 name: redis-master
 labels:
 name: redis-master
spec:
 replicas: 1
 selector:
 name: redis-master
 template:
 metadata:
 labels:
 name: redis-master
 spec:
 containers:
 - name: master
 image: kubeguide/redis-master
 ports:
 - containerPort: 6379

kubectl create -f redis-master-controller.yaml

kubectl get pods

NAME READY STATUS RESTARTS AGE

redis-master-b03io 1/1 Running 0 1h

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

Kubernetes 集群架构例子

1.创建redis-master Pod和服务

创建一个与之关联的Service（服务）redis-master的定义文件（文件名为redis-master-service.yaml），
完整内容如下：

apiVersion: v1
kind: Service
metadata:
 name: redis-master
 labels:
 name: redis-master
spec:
 ports:
 - port: 6379
 targetPort: 6379
 selector:
 name: redis-master

spec.selector确定了哪些Pod对应到本服务，这里
的定义表明拥有redis-master 标签的Pod属于redis-
master 服务，另外，ports 部分中的targetPort属性用来
确定提供该服务的容器所暴露（EXPOSE）的端口号，即
具体的服务进程在容器内的targetPort上提供服务，而port
属性则定义了Service的虚端口。

kubectl create -f redis-master-service.yaml

kubectl get services

NAME LABELS SELECTOR

IP(S) PORT(S)

redis-master name=redis-master

name=redis-master 10.254.208.57 6379/TCP

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

Kubernetes 集群架构例子

2. 创建redis-slave Pod和服务
redis-slave-controller.yaml，下面给出了该文件的完整内容：

apiVersion: v1
kind: ReplicationController
metadata:
 name: redis-slave
 labels:
 name: redis-slave
spec:
 replicas: 2
 selector:
 name: redis-slave
 template:
 metadata:
 labels:
 name: redis-slave
 spec:
 containers:
 - name: slave
 image: kubeguide/guestbook-redis-slave
 env:
 - name: GET_HOSTS_FROM
 value: env
 ports:
 - containerPort: 6379

kubectl create -f redis-slave-controller.yaml

 kubectl get rc

CONTROLLER CONTAINER(S) IMAGE(S)

SELECTOR REPLICAS

redis-master master kubeguide/redis-master

name=redis-master 1

redis-slave slave kubeguide/guestbook-redis-slave

name=redis-slave 2

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

Kubernetes 集群架构例子

redis-slave-service.yaml的内容如下：

apiVersion: v1
kind: Service
metadata:
 name: redis-slave
 labels:
 name: redis-slave
spec:
 ports:
 - port: 6379
 selector:
 name: redis-slave

2. 创建redis-slave Pod和服务

kubectl create -f redis-slave-service.yaml

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

Kubernetes 集群架构例子

为了实现redis集群的主从数据同步，redis-slave需要知道
redis-master的地址，所以在redis-slave镜像的启动命令

/run.sh 中，我们可以如下内容：

redis-server --slaveof

${REDIS_MASTER_SERVICE_HOST} 6379

Redis如何同
步的

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

Kubernetes 集群架构例子
类似地，定义frontend的RC配置文件——frontend-controller.yaml，内容如下：

apiVersion: v1
kind: ReplicationController
metadata:
 name: frontend
 labels:
 name: frontend
spec:
 replicas: 3
 selector:
 name: frontend
 template:
 metadata:
 labels:
 name: frontend
 spec:
 containers:
 - name: frontend
 image: kubeguide/guestbook-php-frontend
 env:
 - name: GET_HOSTS_FROM
 value: env
 ports:
 - containerPort: 80

3. 创建frontend Pod和服务

kubectl create -f frontend-controller.yaml

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

Kubernetes 集群架构例子

服务定义文件frontend-service.yaml的内容如下：

apiVersion: v1
kind: Service
metadata:
 name: frontend
 labels:
 name: frontend
spec:
 type: NodePort
 ports:
 - port: 80
 nodePort: 30001
 selector:
 name: frontend

kubectl create -f frontend-service.yaml

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

Kubernetes 集群架构例子

if (isset($_GET['cmd']) === true) {
 $host = 'redis-master';
 if (getenv('GET_HOSTS_FROM') == 'env') {
 $host = getenv('REDIS_MASTER_SERVICE_HOST');
 }
 header('Content-Type: application/json');
 if ($_GET['cmd'] == 'set') {
 $client = new Predis\Client([
 'scheme' => 'tcp',
 'host' => $host,
 'port' => 6379,
]);

 $client->set($_GET['key'], $_GET['value']);
 print('{"message": "Updated"}');
 } else {
 $host = 'redis-slave';
 if (getenv('GET_HOSTS_FROM') == 'env') {
 $host = getenv('REDIS_SLAVE_SERVICE_HOST');
 }
 $client = new Predis\Client([
 'scheme' => 'tcp',
 'host' => $host,
 'port' => 6379,
]);

我 们 注 意 到 Pod 里 提 供 的 容 器 镜 像 为
kubeguide/guestbook-php-frontend，该镜像中所
包含的PHP的留言板源码（guestbook.php）如下：

PHP怎么访问
Redis服务的

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

Kubernetes 集群架构例子
成功OR失败

经过上面的三个步骤，我们终于成功实现了留言板系统在Kubernetes

上的部署工作，现在到了一起来见证成果的时刻了，在你的笔记本上
打开浏览器，输入下面的URL：

http://虚拟机IP:30001

如果看到如图1.4所示的网页，并且看到网页上有一条留言——“Hello

World!”，那么恭喜你，之前的努力没有白费，如果看不到这个网页，
可能有几个原因，比如防火墙的问题，无法访问30001端口，或者因
为你是代理上网，浏览器错把虚机的IP地址当成远程地址了，如果这
种情况无法解决，那么也可以在虚机上直接运行 curl localhost:30001

来验证此端口是否能被访问，如果还是不能访问，那么这肯定不是机
器的问题…

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

集群运维常见问题 资源隔离与调度问题

测试环境

开发环境

kubectl label nodes kubernetes-minion1 zone=test

kubectl label nodes kubernetes-minion1 zone=dev

apiVersion: v1
kind: ReplicationController
metadata:
 name: redis-master
 labels:
 name: redis-master
spec:
 replicas: 1
 selector:
 name: redis-master
 template:
 metadata:
 labels:
 name: redis-master
 spec:
 containers:
 - name: master
 image: kubeguide/redis-master
 ports:
 - containerPort: 6379
 nodeSelector:
 zone: test

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

集群运维常见问题

 kubectl scale [--resource-version=version] [--current-replicas=count] --replicas=COUNT RESOURCE

RC replicas

kubectl rolling-update frontend --image=image:v2

滚动升级
 --rollback

扩容与升级问题

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

集群运维常见问题 资源配额问题

kube-apiserver ... --admission_control=LimitRanger,ResourceQuota apiVersion: v1
kind: ReplicationController
metadata:
 name: redis-master
 labels:
 name: redis-master
spec:
 replicas: 1
 selector:
 name: redis-master
 template:
 metadata:
 labels:
 name: redis-master
 spec:
 containers:
 - name: master
 image: kubeguide/redis-master
 ports:
 - containerPort: 6379
 resources:
 limits:
 cpu: 0.5
 memory: 128Mi

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

集群运维常见问题 资源配额问题

当Kubernetes启动一个容器时，会将CPU配额值乘以1024并转为整数传递给docker

run的--cpu-shares参数，之所以乘以1024是因为Docker的cpu-shares参数是以1024

为基数计算CPU时间的。另外，Docker官方文档里解释说cpu-shares是一个相对权
重值 (relative weight)，因此Kubernetes官方文档里解释cpu: 0.5表示该容器占用0.5

个CPU计算时间的说法其实是不准确的。仅当该节点是单核心CPU而且只运行两个
容器，每个容器的CPU配额设定为0.5时，上述说法才成立。假如一个节点上同时运
行了3个容器A，B，C，其中A容器的CPU配额设置为1，B与C设置为0.5。那么，当
系统的CPU利用率达到100%时，A容器只占用了1*100/(1+0.5+0.5)=50%的CPU时
间，而B与C分别占用25%的CPU时间。如果此时我们加入一个新的容器D，它的
CPU配额也设置为1，则通过计算我们得到A此时只占据33%的CPU时间。对于目前
主流的多核CPU，容器的CPU配额会在多核心上进行承担。因此在多核CPU上，即
使某个容器声明CPU<1，它也可能会占满多个CPU核。例如2个设定cpu=0.5的容器
运行在4核的CPU上，每个容器可能会用光4*0.5/(0.5+0.5)=2个CPU核。

来自Kubernetes
权威指南

从Docker到Kubernetes之技术实战 讲师 Leader-us

DATAGURU专业数据分析社区

集群运维常见问题 私有docker registry

来自Kubernetes
权威指南

docker run -d -e SETTINGS_FLAVOR=dev -e STORAGE_PATH=/tmp/registry -v /opt/data/registry:/tmp/registry -p

5000:5000 registry 可以从/opt/data/registry下找到私有仓库都存在哪些镜像

我本地是在Master节点192.168.131.134建立的私有仓库，地址是192.168.131.134:5000
 在Minion节点上修改docker守护进程的配置文件，
 增加--insecure-registry 192.168.131.134:5000 （私有仓库的访问地址），并重启
 在Minion节点上修改kubelet的配置文件，增加pod_infra_container_image 参数，修改pause image为私有仓库的image
[root@centos-minion ~]# cat /etc/kubernetes/kubelet
The address for the info server to serve on (set to 0.0.0.0 or "" for all interfaces)
KUBELET_ADDRESS="--address=0.0.0.0 --pod_infra_container_image=192.168.131.134:5000/google_containers/pause"
 上述操作需要在每一个Minion节点上执行通过。
 在Master节点或者任何一个已经下载了google_containers/pause镜像的机器上，将此镜像重新打tag ，标识成为私有仓
库的镜像，并推送到私有仓库中：
打标签 （2c40b0526b63为google_containers/pause的Id）
 docker tag 2c40b0526b63 192.168.131.134:5000/google_containers/pause
推到私有镜像中
docker push 192.168.131.134:5000/google_containers/pause
查看私有镜像的内容
[root@centos-minion ~]# docker search 192.168.131.134:5000/google_containers

DATAGURU专业数据分析网站

FAQ时间

