
Kubernetes1.6 ——
CentOS7 TLS

 Jimmy Song

GitHub https://github.com/rootsongjc/follow-me-install-kubernetes-cluster

Fork https://github.com/opsnull/follow-me-install-kubernetes-cluster

V1.0

2017-04-13

Kubernetes1.6 —— CentOS7 TLS

1. kubernetes TLS
 CFSSL

 CA (Certificate Authority)
2. kubernetes

 admin
 kube-proxy

 opsnssl

 cfssl-certinfo

2. kubeconfig
 TLS Bootstrapping Token
 kubelet bootstrapping kubeconfig
 kube-proxy kubeconfig
 kubeconfig

3. etcd
TLS

 etcd systemd unit
 etcd

4. kubectl
 kubectl
 kubectl kubeconfig

5. kubernetes master
TLS

http://rootsongjc.github.io/about
https://github.com/rootsongjc/follow-me-install-kubernetes-cluster
https://github.com/opsnull/follow-me-install-kubernetes-cluster

 kube-apiserver
 kube-controller-manager

 kube-controller-manager
 kube-scheduler

 kube-scheduler
 master

6. kubernetes node

Flanneld
 kubelet
 kubelet kube-proxy

 kubelet service
kublet
 kublet TLS
 kube-proxy
 kube-proxy

7. kubedns
 RoleBinding

 kube-dns ServiceAccount
 kube-dns

 kube-dns Deployment

 kubedns
8. dashboard

dashboard-service
dashboard-controller

dashboard
 kubectl proxy dashboard
 kube-apiserver dashboard

9. Heapster
 grafana-deployment
 heapster-deployment
 influxdb-deployment
 monitoring-influxdb Service

 grafana
 influxdb admin UI

10. EFK
 es-controller.yaml
 es-service.yaml
 fluentd-es-ds.yaml
 kibana-controller.yaml

 Node

 kibana

 kubernetes kubeadm

TLS

 kubernetes

docker

CentOS 7.2.1511
Docker 1.12.5
Kubernetes 1.6.0
Docker 1.12.5 yum
Etcd 3.1.5
Flanneld 0.7 vxlan
TLS (etcd kubernetes master node)
RBAC
kublet TLS BootStrapping
kubedns dashboard heapster(influxdb grafana) EFK(elasticsearch fluentd kibana)

docker harbor harbor docker-compose

https://github.com/rootsongjc/follow-me-install-kubernetes-cluster/blob/master/github.com/vmware/harbor

IP Hostname Roles

172.20.0.112
sz-pg-oam-docker-
hub-
001.tendcloud.com

Harbor

172.20.0.113
sz-pg-oam-docker-
test-
001.tendcloud.com

master node kube-apiserver kube-controller-
manager kube-scheduler kubelet kube-proxy etcd
flannel

172.20.0.114
sz-pg-oam-docker-
test-
002.tendcloud.com

node kubectl kube-proxy flannel etcd

172.20.0.115
sz-pg-oam-docker-
test-
003.tendcloud.com

node kubectl kube-proxy flannel etcd

172.20.0.112 harbor harbor
http://github.com/vmware/harbor

172.20.0.113 master node

Google kubernetes

index.tenxcloud.com/jimmy/elasticsearch:v2.4.1-2

index.tenxcloud.com/jimmy/fluentd-elasticsearch:1.22

index.tenxcloud.com/jimmy/kibana:v4.6.1-1

index.tenxcloud.com/jimmy/kubernetes-dashboard-amd64:v1.6.0

index.tenxcloud.com/jimmy/heapster-grafana-amd64:v4.0.2

index.tenxcloud.com/jimmy/heapster-amd64:v1.3.0-beta.1

index.tenxcloud.com/jimmy/heapster-influxdb-amd64:v1.1.1

index.tenxcloud.com/jimmy/k8s-dns-kube-dns-amd64:1.14.1

index.tenxcloud.com/jimmy/k8s-dns-dnsmasq-nanny-amd64:1.14.1

index.tenxcloud.com/jimmy/k8s-dns-sidecar-amd64:1.14.1

http://github.com/vmware/harbor
http://www.tenxcloud.com/

1. kubernetes TLS

kubernetes TLS CloudFlare PKI

 cfssl Certificate Authority (CA)

 CA

ca-key.pem
ca.pem
kubernetes-key.pem
kubernetes.pem
kube-proxy.pem
kube-proxy-key.pem
admin.pem
admin-key.pem

etcd ca.pem kubernetes-key.pem kubernetes.pem
kube-apiserver ca.pem kubernetes-key.pem kubernetes.pem
kubelet ca.pem
kube-proxy ca.pem kube-proxy-key.pem kube-proxy.pem
kubectl ca.pem admin-key.pem admin.pem

kube-controller kube-scheduler kube-apiserver

 CFSSL

	

go

$	wget	https://pkg.cfssl.org/R1.2/cfssl_linux-amd64

$	chmod	+x	cfssl_linux-amd64

$	sudo	mv	cfssl_linux-amd64	/root/local/bin/cfssl

$	wget	https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64

$	chmod	+x	cfssljson_linux-amd64

$	sudo	mv	cfssljson_linux-amd64	/root/local/bin/cfssljson

$	wget	https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64

$	chmod	+x	cfssl-certinfo_linux-amd64

$	sudo	mv	cfssl-certinfo_linux-amd64	/root/local/bin/cfssl-certinfo

$	export	PATH=/root/local/bin:$PATH

https://github.com/cloudflare/cfssl

Go1.7.5

$go	get	-u	github.com/cloudflare/cfssl/cmd/...

$echo	$GOPATH

/usr/local

$ls	/usr/local/bin/cfssl*

cfssl	cfssl-bundle	cfssl-certinfo	cfssljson	cfssl-newkey	cfssl-scan

$GOPATH/bin cfssl

 CA (Certificate Authority)

 CA

	

ca-config.json profiles

 profile
signing ca.pem CA=TRUE

server	auth client CA server

client	auth server CA client

 CA

$	mkdir	/root/ssl

$	cd	/root/ssl

$	cfssl	print-defaults	config	>	config.json

$	cfssl	print-defaults	csr	>	csr.json

$	cat	ca-config.json

{

		"signing":	{

				"default":	{

						"expiry":	"8760h"

				},

				"profiles":	{

						"kubernetes":	{

								"usages":	[

												"signing",

												"key	encipherment",

												"server	auth",

												"client	auth"

],

								"expiry":	"8760h"

						}

				}

		}

}

	

"CN" Common	Name kube-apiserver (User Name)

"O" Organization kube-apiserver (Group)

 CA

	

2. kubernetes

 kubernetes

$	cat	ca-csr.json

{

		"CN":	"kubernetes",

		"key":	{

				"algo":	"rsa",

				"size":	2048

		},

		"names":	[

				{

						"C":	"CN",

						"ST":	"BeiJing",

						"L":	"BeiJing",

						"O":	"k8s",

						"OU":	"System"

				}

]

}

$	cfssl	gencert	-initca	ca-csr.json	|	cfssljson	-bare	ca

$	ls	ca*

ca-config.json		ca.csr		ca-csr.json		ca-key.pem		ca.pem

	

 hosts IP etcd

 kubernetes	master etcd kubernetes	

master IP kubernetes IP kue-apiserver

service-cluster-ip-range IP 10.254.0.1

 kubernetes

	

$	cat	kubernetes-csr.json

{

				"CN":	"kubernetes",

				"hosts":	[

						"127.0.0.1",

						"172.20.0.112",

						"172.20.0.113",

						"172.20.0.114",

						"172.20.0.115",

						"10.254.0.1",

						"kubernetes",

						"kubernetes.default",

						"kubernetes.default.svc",

						"kubernetes.default.svc.cluster",

						"kubernetes.default.svc.cluster.local"

],

				"key":	{

								"algo":	"rsa",

								"size":	2048

				},

				"names":	[

								{

												"C":	"CN",

												"ST":	"BeiJing",

												"L":	"BeiJing",

												"O":	"k8s",

												"OU":	"System"

								}

]

}

$	cfssl	gencert	-ca=ca.pem	-ca-key=ca-key.pem	-config=ca-config.json	-

profile=kubernetes	kubernetes-csr.json	|	cfssljson	-bare	kubernetes

$	ls	kuberntes*

kubernetes.csr		kubernetes-csr.json		kubernetes-key.pem		kubernetes.pem

	

 admin

 admin

	

 kube-apiserver RBAC (kubelet kube-proxy Pod)

kube-apiserver RBAC RoleBindings cluster-admin Group

system:masters Role cluster-admin Role kube-apiserver
API
OU Group system:masters kubelet kube-apiserver

 CA
system:masters API

 admin

	

 kube-proxy

$	echo	'{"CN":"kubernetes","hosts":[""],"key":{"algo":"rsa","size":2048}}'	|	cfssl	

gencert	-ca=ca.pem	-ca-key=ca-key.pem	-config=ca-config.json	-profile=kubernetes	-

hostname="127.0.0.1,172.20.0.112,172.20.0.113,172.20.0.114,172.20.0.115,kubernetes,

kubernetes.default"	-	|	cfssljson	-bare	kubernetes

$	cat	admin-csr.json

{

		"CN":	"admin",

		"hosts":	[],

		"key":	{

				"algo":	"rsa",

				"size":	2048

		},

		"names":	[

				{

						"C":	"CN",

						"ST":	"BeiJing",

						"L":	"BeiJing",

						"O":	"system:masters",

						"OU":	"System"

				}

]

}

$	cfssl	gencert	-ca=ca.pem	-ca-key=ca-key.pem	-config=ca-config.json	-

profile=kubernetes	admin-csr.json	|	cfssljson	-bare	admin

$	ls	admin*

admin.csr		admin-csr.json		admin-key.pem		admin.pem

 kube-proxy

	

CN User system:kube-proxy

kube-apiserver RoleBinding cluster-admin User system:kube-proxy Role

system:node-proxier Role kube-apiserver Proxy API

 kube-proxy

	

 kubernetes

 opsnssl

$	cat	kube-proxy-csr.json

{

		"CN":	"system:kube-proxy",

		"hosts":	[],

		"key":	{

				"algo":	"rsa",

				"size":	2048

		},

		"names":	[

				{

						"C":	"CN",

						"ST":	"BeiJing",

						"L":	"BeiJing",

						"O":	"k8s",

						"OU":	"System"

				}

]

}

$	cfssl	gencert	-ca=ca.pem	-ca-key=ca-key.pem	-config=ca-config.json	-

profile=kubernetes		kube-proxy-csr.json	|	cfssljson	-bare	kube-proxy

$	ls	kube-proxy*

kube-proxy.csr		kube-proxy-csr.json		kube-proxy-key.pem		kube-proxy.pem

	

 Issuer ca-csr.json

 Subject kubernetes-csr.json

 X509v3	Subject	Alternative	Name kubernetes-csr.json

 X509v3	Key	Usage Extended	Key	Usage ca-config.json

kubernetes profile

 cfssl-certinfo

	

$	openssl	x509		-noout	-text	-in		kubernetes.pem

...

				Signature	Algorithm:	sha256WithRSAEncryption

								Issuer:	C=CN,	ST=BeiJing,	L=BeiJing,	O=k8s,	OU=System,	CN=Kubernetes

								Validity

												Not	Before:	Apr		5	05:36:00	2017	GMT

												Not	After	:	Apr		5	05:36:00	2018	GMT

								Subject:	C=CN,	ST=BeiJing,	L=BeiJing,	O=k8s,	OU=System,	CN=kubernetes

...

								X509v3	extensions:

												X509v3	Key	Usage:	critical

																Digital	Signature,	Key	Encipherment

												X509v3	Extended	Key	Usage:

																TLS	Web	Server	Authentication,	TLS	Web	Client	Authentication

												X509v3	Basic	Constraints:	critical

																CA:FALSE

												X509v3	Subject	Key	Identifier:

																DD:52:04:43:10:13:A9:29:24:17:3A:0E:D7:14:DB:36:F8:6C:E0:E0

												X509v3	Authority	Key	Identifier:

																keyid:44:04:3B:60:BD:69:78:14:68:AF:A0:41:13:F6:17:07:13:63:58:CD

												X509v3	Subject	Alternative	Name:

																DNS:kubernetes,	DNS:kubernetes.default,	DNS:kubernetes.default.svc,	

DNS:kubernetes.default.svc.cluster,	DNS:kubernetes.default.svc.cluster.local,	IP	

Address:127.0.0.1,	IP	Address:172.20.0.112,	IP	Address:172.20.0.113,	IP	

Address:172.20.0.114,	IP	Address:172.20.0.115,	IP	Address:10.254.0.1

...

$	cfssl-certinfo	-cert	kubernetes.pem

...

{

		"subject":	{

				"common_name":	"kubernetes",

				"country":	"CN",

				"organization":	"k8s",

				"organizational_unit":	"System",

				"locality":	"BeiJing",

				"province":	"BeiJing",

				"names":	[

.pem /etc/kubernetes/ssl

	

						"CN",

						"BeiJing",

						"BeiJing",

						"k8s",

						"System",

						"kubernetes"

]

		},

		"issuer":	{

				"common_name":	"Kubernetes",

				"country":	"CN",

				"organization":	"k8s",

				"organizational_unit":	"System",

				"locality":	"BeiJing",

				"province":	"BeiJing",

				"names":	[

						"CN",

						"BeiJing",

						"BeiJing",

						"k8s",

						"System",

						"Kubernetes"

]

		},

		"serial_number":	"174360492872423263473151971632292895707129022309",

		"sans":	[

				"kubernetes",

				"kubernetes.default",

				"kubernetes.default.svc",

				"kubernetes.default.svc.cluster",

				"kubernetes.default.svc.cluster.local",

				"127.0.0.1",

				"10.64.3.7",

				"10.254.0.1"

],

		"not_before":	"2017-04-05T05:36:00Z",

		"not_after":	"2018-04-05T05:36:00Z",

		"sigalg":	"SHA256WithRSA",

...

$	sudo	mkdir	-p	/etc/kubernetes/ssl

$	sudo	cp	*.pem	/etc/kubernetes/ssl

Generate self-signed certificates
Setting up a Certificate Authority and Creating TLS Certificates
Client Certificates V/s Server Certificates

 CA

2. kubeconfig
kubelet kube-proxy Node Master kube-apiserver

kubernetes 1.4 kube-apiserver TLS TLS Bootstrapping

 kubelet

 TLS Bootstrapping Token

Token auth file

Token 128 bit

	

token.csv Master Node /etc/kubernetes/

	

 kubelet bootstrapping kubeconfig

export	BOOTSTRAP_TOKEN=$(head	-c	16	/dev/urandom	|	od	-An	-t	x	|	tr	-d	'	')

cat	>	token.csv	<<EOF

${BOOTSTRAP_TOKEN},kubelet-bootstrap,10001,"system:kubelet-bootstrap"

EOF

$cp	token.csv	/etc/kubernetes/

https://coreos.com/os/docs/latest/generate-self-signed-certificates.html
https://github.com/kelseyhightower/kubernetes-the-hard-way/blob/master/docs/02-certificate-authority.md
https://blogs.msdn.microsoft.com/kaushal/2012/02/17/client-certificates-vs-server-certificates/
http://blog.jobbole.com/104919/
https://kubernetes.io/docs/admin/kubelet-tls-bootstrapping/

	

--embed-certs true certificate-authority

bootstrap.kubeconfig

 kube-apiserver

 kube-proxy kubeconfig

	

$	cd	/etc/kubernetes

$	export	KUBE_APISERVER="https://172.20.0.113:6443"

$	#	

$	kubectl	config	set-cluster	kubernetes	\

		--certificate-authority=/etc/kubernetes/ssl/ca.pem	\

		--embed-certs=true	\

		--server=${KUBE_APISERVER}	\

		--kubeconfig=bootstrap.kubeconfig

$	#	

$	kubectl	config	set-credentials	kubelet-bootstrap	\

		--token=${BOOTSTRAP_TOKEN}	\

		--kubeconfig=bootstrap.kubeconfig

$	#	

$	kubectl	config	set-context	default	\

		--cluster=kubernetes	\

		--user=kubelet-bootstrap	\

		--kubeconfig=bootstrap.kubeconfig

$	#	

$	kubectl	config	use-context	default	--kubeconfig=bootstrap.kubeconfig

$	export	KUBE_APISERVER="https://172.20.0.113:6443"

$	#	

$	kubectl	config	set-cluster	kubernetes	\

		--certificate-authority=/etc/kubernetes/ssl/ca.pem	\

		--embed-certs=true	\

		--server=${KUBE_APISERVER}	\

		--kubeconfig=kube-proxy.kubeconfig

$	#	

$	kubectl	config	set-credentials	kube-proxy	\

		--client-certificate=/etc/kubernetes/ssl/kube-proxy.pem	\

		--client-key=/etc/kubernetes/ssl/kube-proxy-key.pem	\

		--embed-certs=true	\

		--kubeconfig=kube-proxy.kubeconfig

$	#	

$	kubectl	config	set-context	default	\

		--cluster=kubernetes	\

		--user=kube-proxy	\

		--kubeconfig=kube-proxy.kubeconfig

$	#	

$	kubectl	config	use-context	default	--kubeconfig=kube-proxy.kubeconfig

 --embed-certs true certificate-

authority client-certificate client-key kube-

proxy.kubeconfig

kube-proxy.pem CN system:kube-proxy kube-apiserver

RoleBinding cluster-admin User system:kube-proxy Role system:node-proxier

 Role kube-apiserver Proxy API

 kubeconfig

 kubeconfig Node /etc/kubernetes/

	

3. etcd
kuberntes etcd etcd

 kubernetes master sz-pg-oam-docker-test-

001.tendcloud.com sz-pg-oam-docker-test-002.tendcloud.com sz-pg-oam-docker-test-

003.tendcloud.com

sz-pg-oam-docker-test-001.tendcloud.com 172.20.0.113
sz-pg-oam-docker-test-002.tendcloud.com 172.20.0.114
sz-pg-oam-docker-test-003.tendcloud.com 172.20.0.115

TLS

 etcd TLS kubernetes

	

kubernetes hosts IP

 https://github.com/coreos/etcd/releases

	

 etcd systemd unit

 ETCD_NAME INTERNAL_IP

$	cp	bootstrap.kubeconfig	kube-proxy.kubeconfig	/etc/kubernetes/

$	cp	ca.pem	kubernetes-key.pem	kubernetes.pem	/etc/kubernetes/ssl

$	https://github.com/coreos/etcd/releases/download/v3.1.5/etcd-v3.1.5-linux-

amd64.tar.gz

$	tar	-xvf	etcd-v3.1.4-linux-amd64.tar.gz

$	sudo	mv	etcd-v3.1.4-linux-amd64/etcd*	/root/local/bin

	

 etcd /var/lib/etcd /var/lib/etcd

 etcd (cert-file key-file) Peers CA
(peer-cert-file peer-key-file peer-trusted-ca-file) CA trusted-ca-file

 kubernetes.pem kubernetes-csr.json hosts
etcd INTERNAL_IP

$	export	ETCD_NAME=sz-pg-oam-docker-test-001.tendcloud.com

$	export	INTERNAL_IP=172.20.0.113

$	sudo	mkdir	-p	/var/lib/etcd	/var/lib/etcd

$	cat	>	etcd.service	<<EOF

[Unit]

Description=Etcd	Server

After=network.target

After=network-online.target

Wants=network-online.target

Documentation=https://github.com/coreos

[Service]

Type=notify

WorkingDirectory=/var/lib/etcd/

EnvironmentFile=-/etc/etcd/etcd.conf

ExecStart=/root/local/bin/etcd	\\

		--name	${ETCD_NAME}	\\

		--cert-file=/etc/kubernetes/ssl/kubernetes.pem	\\

		--key-file=/etc/kubernetes/ssl/kubernetes-key.pem	\\

		--peer-cert-file=/etc/kubernetes/ssl/kubernetes.pem	\\

		--peer-key-file=/etc/kubernetes/ssl/kubernetes-key.pem	\\

		--trusted-ca-file=/etc/kubernetes/ssl/ca.pem	\\

		--peer-trusted-ca-file=/etc/kubernetes/ssl/ca.pem	\\

		--initial-advertise-peer-urls	https://${INTERNAL_IP}:2380	\\

		--listen-peer-urls	https://${INTERNAL_IP}:2380	\\

		--listen-client-urls	https://${INTERNAL_IP}:2379,https://127.0.0.1:2379	\\

		--advertise-client-urls	https://${INTERNAL_IP}:2379	\\

		--initial-cluster-token	etcd-cluster-0	\\

		--initial-cluster	sz-pg-oam-docker-test-

001.tendcloud.com=https://172.20.0.113:2380,sz-pg-oam-docker-test-

002.tendcloud.com=https://172.20.0.114:2380,sz-pg-oam-docker-test-

003.tendcloud.com=https://172.20.0.115:2380	\\

		--initial-cluster-state	new	\\

		--data-dir=/var/lib/etcd

Restart=on-failure

RestartSec=5

LimitNOFILE=65536

[Install]

WantedBy=multi-user.target

EOF

--initial-cluster-state new --name --initial-cluster

 unit etcd.service

 etcd

	

 kubernetes master etcd

 kubernetes master

	

 cluster	is	healthy

4. kubectl

 kubectl

$	sudo	mv	etcd.service	/etc/systemd/system/

$	sudo	systemctl	daemon-reload

$	sudo	systemctl	enable	etcd

$	sudo	systemctl	start	etcd

$	systemctl	status	etcd

$	etcdctl	\

		--ca-file=/etc/kubernetes/ssl/ca.pem	\

		--cert-file=/etc/kubernetes/ssl/kubernetes.pem	\

		--key-file=/etc/kubernetes/ssl/kubernetes-key.pem	\

		cluster-health

2017-04-11	15:17:09.082250	I	|	warning:	ignoring	ServerName	for	user-provided	CA	

for	backwards	compatibility	is	deprecated

2017-04-11	15:17:09.083681	I	|	warning:	ignoring	ServerName	for	user-provided	CA	

for	backwards	compatibility	is	deprecated

member	9a2ec640d25672e5	is	healthy:	got	healthy	result	from	

https://172.20.0.115:2379

member	bc6f27ae3be34308	is	healthy:	got	healthy	result	from	

https://172.20.0.114:2379

member	e5c92ea26c4edba0	is	healthy:	got	healthy	result	from	

https://172.20.0.113:2379

cluster	is	healthy

	

 kubectl kubeconfig

	

admin.pem OU system:masters kube-apiserver RoleBinding

cluster-admin Group system:masters Role cluster-admin Role

kube-apiserver API

 kubeconfig ~/.kube/config

5. kubernetes master
kubernetes master

kube-apiserver
kube-scheduler
kube-controller-manager

kube-scheduler kube-controller-manager kube-apiserver

 kube-scheduler kube-controller-manager

 leader

 kubernetes master load
balancer kube-apiserver

$	wget	https://dl.k8s.io/v1.6.0/kubernetes-client-linux-amd64.tar.gz

$	tar	-xzvf	kubernetes-client-linux-amd64.tar.gz

$	cp	kubernetes/client/bin/kube*	/usr/bin/

$	chmod	a+x	/usr/bin/kube*

$	export	KUBE_APISERVER="https://172.20.0.113:6443"

$	#	

$	kubectl	config	set-cluster	kubernetes	\

		--certificate-authority=/etc/kubernetes/ssl/ca.pem	\

		--embed-certs=true	\

		--server=${KUBE_APISERVER}

$	#	

$	kubectl	config	set-credentials	admin	\

		--client-certificate=/etc/kubernetes/ssl/admin.pem	\

		--embed-certs=true	\

		--client-key=/etc/kubernetes/ssl/admin-key.pem

$	#	

$	kubectl	config	set-context	kubernetes	\

		--cluster=kubernetes	\

		--user=admin

$	#	

$	kubectl	config	use-context	kubernetes

TLS

pem token.csv TLS

	

 github release tarball

	

 CHANGELOG client server tarball

server tarball kubernetes-server-linux-amd64.tar.gz client (kubectl)

kubernetes-client-linux-amd64.tar.gz

	

	

 kube-apiserver

 kube-apiserver service

$	ls	/etc/kubernetes/ssl

admin-key.pem		admin.pem		ca-key.pem		ca.pem		kube-proxy-key.pem		kube-proxy.pem		

kubernetes-key.pem		kubernetes.pem

$	wget	

https://github.com/kubernetes/kubernetes/releases/download/v1.6.0/kubernetes.tar.gz

$	tar	-xzvf	kubernetes.tar.gz

...

$	cd	kubernetes

$./cluster/get-kube-binaries.sh

...

$	#	wget	https://dl.k8s.io/v1.6.0/kubernetes-client-linux-amd64.tar.gz

$	wget	https://dl.k8s.io/v1.6.0/kubernetes-server-linux-amd64.tar.gz

$	tar	-xzvf	kubernetes-server-linux-amd64.tar.gz

...

$	cd	kubernetes

$	tar	-xzvf		kubernetes-src.tar.gz

$	cp	-r	server/bin/{kube-apiserver,kube-controller-manager,kube-

scheduler,kubectl,kube-proxy,kubelet}	/root/local/bin/

https://github.com/kubernetes/kubernetes/releases
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG.md

serivce /usr/lib/systemd/system/kube-apiserver.service

	

/etc/kubernetes/config

[Unit]

Description=Kubernetes	API	Service

Documentation=https://github.com/GoogleCloudPlatform/kubernetes

After=network.target

After=etcd.service

[Service]

EnvironmentFile=-/etc/kubernetes/config

EnvironmentFile=-/etc/kubernetes/apiserver

ExecStart=/usr/bin/kube-apiserver	\

				$KUBE_LOGTOSTDERR	\
				$KUBE_LOG_LEVEL	\
				$KUBE_ETCD_SERVERS	\
				$KUBE_API_ADDRESS	\
				$KUBE_API_PORT	\
				$KUBELET_PORT	\
				$KUBE_ALLOW_PRIV	\
				$KUBE_SERVICE_ADDRESSES	\
				$KUBE_ADMISSION_CONTROL	\
				$KUBE_API_ARGS

Restart=on-failure

Type=notify

LimitNOFILE=65536

[Install]

WantedBy=multi-user.target

	

kube-apiserver kube-controller-manager kube-scheduler kubelet kube-
proxy

apiserver /etc/kubernetes/apiserver

###

#	kubernetes	system	config

#

#	The	following	values	are	used	to	configure	various	aspects	of	all

#	kubernetes	services,	including

#

#			kube-apiserver.service

#			kube-controller-manager.service

#			kube-scheduler.service

#			kubelet.service

#			kube-proxy.service

#	logging	to	stderr	means	we	get	it	in	the	systemd	journal

KUBE_LOGTOSTDERR="--logtostderr=true"

#	journal	message	level,	0	is	debug

KUBE_LOG_LEVEL="--v=0"

#	Should	this	cluster	be	allowed	to	run	privileged	docker	containers

KUBE_ALLOW_PRIV="--allow-privileged=true"

#	How	the	controller-manager,	scheduler,	and	proxy	find	the	apiserver

#KUBE_MASTER="--master=http://sz-pg-oam-docker-test-001.tendcloud.com:8080"

KUBE_MASTER="--master=http://172.20.0.113:8080"

	

--authorization-mode=RBAC RBAC

kube-scheduler kube-controller-manager kube-apiserver
 kube-apiserver ;

kubelet kube-proxy kubectl Node kube-
apiserver TLS RBAC
kube-proxy kubectl User Group RBAC

###

##	kubernetes	system	config

##

##	The	following	values	are	used	to	configure	the	kube-apiserver

##

#

##	The	address	on	the	local	server	to	listen	to.

#KUBE_API_ADDRESS="--insecure-bind-address=sz-pg-oam-docker-test-001.tendcloud.com"

KUBE_API_ADDRESS="--advertise-address=172.20.0.113	--bind-address=172.20.0.113	--

insecure-bind-address=172.20.0.113"

#

##	The	port	on	the	local	server	to	listen	on.

#KUBE_API_PORT="--port=8080"

#

##	Port	minions	listen	on

#KUBELET_PORT="--kubelet-port=10250"

#

##	Comma	separated	list	of	nodes	in	the	etcd	cluster

KUBE_ETCD_SERVERS="--etcd-

servers=https://172.20.0.113:2379,172.20.0.114:2379,172.20.0.115:2379"

#

##	Address	range	to	use	for	services

KUBE_SERVICE_ADDRESSES="--service-cluster-ip-range=10.254.0.0/16"

#

##	default	admission	control	policies

KUBE_ADMISSION_CONTROL="--admission-

control=ServiceAccount,NamespaceLifecycle,NamespaceExists,LimitRanger,ResourceQuota

"

#

##	Add	your	own!

KUBE_API_ARGS="--authorization-mode=RBAC	--runtime-

config=rbac.authorization.k8s.io/v1beta1	--kubelet-https=true	--experimental-

bootstrap-token-auth	--token-auth-file=/etc/kubernetes/token.csv	--service-node-

port-range=30000-32767	--tls-cert-file=/etc/kubernetes/ssl/kubernetes.pem	--tls-

private-key-file=/etc/kubernetes/ssl/kubernetes-key.pem	--client-ca-

file=/etc/kubernetes/ssl/ca.pem	--service-account-key-file=/etc/kubernetes/ssl/ca-

key.pem	--etcd-cafile=/etc/kubernetes/ssl/ca.pem	--etcd-

certfile=/etc/kubernetes/ssl/kubernetes.pem	--etcd-

keyfile=/etc/kubernetes/ssl/kubernetes-key.pem	--enable-swagger-ui=true	--

apiserver-count=3	--audit-log-maxage=30	--audit-log-maxbackup=3	--audit-log-

maxsize=100	--audit-log-path=/var/lib/audit.log	--event-ttl=1h"

 kubelet TLS Boostrap --kubelet-certificate-

authority --kubelet-client-certificate --kubelet-client-key

kube-apiserver kubelet ”x509: certificate signed by unknown authority“

--admission-control ServiceAccount

--bind-address 127.0.0.1

runtime-config rbac.authorization.k8s.io/v1beta1 apiVersion

--service-cluster-ip-range Service Cluster IP

 kubernetes etcd /registry --etcd-prefix

 unit kube-apiserver.service

kube-apiserver

	

 kube-controller-manager

 kube-controller-manager serivce

/usr/lib/systemd/system/kube-controller-manager.service

	

/etc/kubernetes/controller-manager

$	systemctl	daemon-reload

$	systemctl	enable	kube-apiserver

$	systemctl	start	kube-apiserver

$	systemctl	status	kube-apiserver

Description=Kubernetes	Controller	Manager

Documentation=https://github.com/GoogleCloudPlatform/kubernetes

[Service]

EnvironmentFile=-/etc/kubernetes/config

EnvironmentFile=-/etc/kubernetes/controller-manager

ExecStart=/usr/bin/kube-controller-manager	\

				$KUBE_LOGTOSTDERR	\
				$KUBE_LOG_LEVEL	\
				$KUBE_MASTER	\
				$KUBE_CONTROLLER_MANAGER_ARGS

Restart=on-failure

LimitNOFILE=65536

[Install]

WantedBy=multi-user.target

	

--service-cluster-ip-range Cluster Service CIDR Node

 kube-apiserver

--cluster-signing-* TLS BootStrap

--root-ca-file kube-apiserver Pod
ServiceAccount CA

--address 127.0.0.1 kube-apiserver scheduler controller-

manager

	

https://github.com/kubernetes-incubator/bootkube/issues/64

 unit kube-controller-manager.service

 kube-controller-manager

	

 kube-scheduler

 kube-scheduler serivce

###

#	The	following	values	are	used	to	configure	the	kubernetes	controller-manager

#	defaults	from	config	and	apiserver	should	be	adequate

#	Add	your	own!

KUBE_CONTROLLER_MANAGER_ARGS="--address=127.0.0.1	--service-cluster-ip-

range=10.254.0.0/16	--cluster-name=kubernetes	--cluster-signing-cert-

file=/etc/kubernetes/ssl/ca.pem	--cluster-signing-key-file=/etc/kubernetes/ssl/ca-

key.pem		--service-account-private-key-file=/etc/kubernetes/ssl/ca-key.pem	--root-

ca-file=/etc/kubernetes/ssl/ca.pem	--leader-elect=true"

$	kubectl	get	componentstatuses

NAME																	STATUS						MESSAGE																																							

																																																	ERROR

scheduler												Unhealthy			Get	http://127.0.0.1:10251/healthz:	dial	tcp	

127.0.0.1:10251:	getsockopt:	connection	refused			

controller-manager			Healthy					ok																																											

																																																		

etcd-2															Unhealthy			Get	http://172.20.0.113:2379/health:	

malformed	HTTP	response	"\x15\x03\x01\x00\x02\x02"								

etcd-0															Healthy					{"health":	"true"}																											

																																																		

etcd-1															Healthy					{"health":	"true"}		

$	systemctl	daemon-reload

$	systemctl	enable	kube-controller-manager

$	systemctl	start	kube-controller-manager

https://github.com/kubernetes-incubator/bootkube/issues/64

/usr/lib/systemd/system/kube-scheduler.serivce

	

/etc/kubernetes/scheduler

	

--address 127.0.0.1 kube-apiserver scheduler controller-

manager

 unit kube-scheduler.service

 kube-scheduler

	

 master

[Unit]

Description=Kubernetes	Scheduler	Plugin

Documentation=https://github.com/GoogleCloudPlatform/kubernetes

[Service]

EnvironmentFile=-/etc/kubernetes/config

EnvironmentFile=-/etc/kubernetes/scheduler

ExecStart=/usr/bin/kube-scheduler	\

												$KUBE_LOGTOSTDERR	\

												$KUBE_LOG_LEVEL	\

												$KUBE_MASTER	\

												$KUBE_SCHEDULER_ARGS

Restart=on-failure

LimitNOFILE=65536

[Install]

WantedBy=multi-user.target

###

#	kubernetes	scheduler	config

#	default	config	should	be	adequate

#	Add	your	own!

KUBE_SCHEDULER_ARGS="--leader-elect=true	--address=127.0.0.1"

$	systemctl	daemon-reload

$	systemctl	enable	kube-scheduler

$	systemctl	start	kube-scheduler

	

6. kubernetes node
kubernetes node

Flanneld Kubernetes Flannel TLS
serivce TLS

Docker1.12.5 docker
kubelet
kube-proxy

kubelet kube-proxy flannel TLS

	

Flanneld

Kubernetes Flannel TLS serivce
TLS

service /usr/lib/systemd/system/flanneld.service

$	kubectl	get	componentstatuses

NAME																	STATUS				MESSAGE														ERROR

scheduler												Healthy			ok																			

controller-manager			Healthy			ok																			

etcd-0															Healthy			{"health":	"true"}			

etcd-1															Healthy			{"health":	"true"}			

etcd-2															Healthy			{"health":	"true"}			

$	ls	/etc/kubernetes/ssl

admin-key.pem		admin.pem		ca-key.pem		ca.pem		kube-proxy-key.pem		kube-proxy.pem		

kubernetes-key.pem		kubernetes.pem

$	ls	/etc/kubernetes/

apiserver		bootstrap.kubeconfig		config		controller-manager		kubelet		kube-

proxy.kubeconfig		proxy		scheduler		ssl		token.csv

http://rootsongjc.github.io/blogs/kubernetes-network-config/
http://rootsongjc.github.io/blogs/kubernetes-network-config/

	

/etc/sysconfig/flanneld

	

FLANNEL_OPTIONS TLS

 kubelet

kubelet kube-apiserver TLS bootstrapping bootstrap token
 kubelet-bootstrap system:node-bootstrapper cluster (role)

 kubelet (certificate signing requests)

[Unit]

Description=Flanneld	overlay	address	etcd	agent

After=network.target

After=network-online.target

Wants=network-online.target

After=etcd.service

Before=docker.service

[Service]

Type=notify

EnvironmentFile=/etc/sysconfig/flanneld

EnvironmentFile=-/etc/sysconfig/docker-network

ExecStart=/usr/bin/flanneld-start	$FLANNEL_OPTIONS

ExecStartPost=/usr/libexec/flannel/mk-docker-opts.sh	-k	DOCKER_NETWORK_OPTIONS	-d	

/run/flannel/docker

Restart=on-failure

[Install]

WantedBy=multi-user.target

RequiredBy=docker.service

#	Flanneld	configuration	options		

#	etcd	url	location.		Point	this	to	the	server	where	etcd	runs

FLANNEL_ETCD_ENDPOINTS="https://172.20.0.113:2379,https://172.20.0.114:2379,https:/

/172.20.0.115:2379"

#	etcd	config	key.		This	is	the	configuration	key	that	flannel	queries

#	For	address	range	assignment

FLANNEL_ETCD_PREFIX="/kube-centos/network"

#	Any	additional	options	that	you	want	to	pass

FLANNEL_OPTIONS="-etcd-cafile=/etc/kubernetes/ssl/ca.pem	-etcd-

certfile=/etc/kubernetes/ssl/kubernetes.pem	-etcd-

keyfile=/etc/kubernetes/ssl/kubernetes-key.pem"

	

--user=kubelet-bootstrap /etc/kubernetes/token.csv

 /etc/kubernetes/bootstrap.kubeconfig

 kubelet kube-proxy

	

 kubelet service

/usr/lib/systemd/system/kubelet.serivce

	

kubelet /etc/kubernetes/kubelet IP node IP

$	cd	/etc/kubernetes

$	kubectl	create	clusterrolebinding	kubelet-bootstrap	\

		--clusterrole=system:node-bootstrapper	\

		--user=kubelet-bootstrap

$	wget	https://dl.k8s.io/v1.6.0/kubernetes-server-linux-amd64.tar.gz

$	tar	-xzvf	kubernetes-server-linux-amd64.tar.gz

$	cd	kubernetes

$	tar	-xzvf		kubernetes-src.tar.gz

$	cp	-r	./server/bin/{kube-proxy,kubelet}	/usr/bin/

[Unit]

Description=Kubernetes	Kubelet	Server

Documentation=https://github.com/GoogleCloudPlatform/kubernetes

After=docker.service

Requires=docker.service

[Service]

WorkingDirectory=/var/lib/kubelet

EnvironmentFile=-/etc/kubernetes/config

EnvironmentFile=-/etc/kubernetes/kubelet

ExecStart=/usr/bin/kubelet	\

												$KUBE_LOGTOSTDERR	\

												$KUBE_LOG_LEVEL	\

												$KUBELET_API_SERVER	\

												$KUBELET_ADDRESS	\

												$KUBELET_PORT	\

												$KUBELET_HOSTNAME	\

												$KUBE_ALLOW_PRIV	\

												$KUBELET_POD_INFRA_CONTAINER	\

												$KUBELET_ARGS

Restart=on-failure

[Install]

WantedBy=multi-user.target

	

--address 127.0.0.1 Pods kubelet API

Pods 127.0.0.1 kubelet

 --hostname-override kube-proxy

 Node
--experimental-bootstrap-kubeconfig bootstrap kubeconfig kubelet

 token kube-apiserver TLS Bootstrapping
 CSR kubelet --cert-dir (kubelet-

client.crt kubelet-client.key) --kubeconfig

 --kubeconfig kube-apiserver --api-servers

 --require-kubeconfig kube-apiserver

 kubelet kube-apiserver (API Server kubectl	

get	nodes Node ;

--cluster-dns kubedns Service IP(kubedns

IP) --cluster-domain

 unit kubelet.service

kublet

###

##	kubernetes	kubelet	(minion)	config

#

##	The	address	for	the	info	server	to	serve	on	(set	to	0.0.0.0	or	""	for	all	

interfaces)

KUBELET_ADDRESS="--address=172.20.0.113"

#

##	The	port	for	the	info	server	to	serve	on

#KUBELET_PORT="--port=10250"

#

##	You	may	leave	this	blank	to	use	the	actual	hostname

KUBELET_HOSTNAME="--hostname-override=172.20.0.113"

#

##	location	of	the	api-server

KUBELET_API_SERVER="--api-servers=http://172.20.0.113:8080"

#

##	pod	infrastructure	container

KUBELET_POD_INFRA_CONTAINER="--pod-infra-container-image=sz-pg-oam-docker-hub-

001.tendcloud.com/library/pod-infrastructure:rhel7"

#

##	Add	your	own!

KUBELET_ARGS="--cgroup-driver=systemd	--cluster-dns=10.254.0.2	--experimental-

bootstrap-kubeconfig=/etc/kubernetes/bootstrap.kubeconfig	--

kubeconfig=/etc/kubernetes/kubelet.kubeconfig	--require-kubeconfig	--cert-

dir=/etc/kubernetes/ssl	--cluster-domain=cluster.local.	--hairpin-mode	promiscuous-

bridge	--serialize-image-pulls=false"

	

 kublet TLS

kubelet kube-apiserver kubernetes
Node

 CSR

	

 CSR

	

 kubelet kubeconfig

	

 kube-proxy

 kube-proxy service

/usr/lib/systemd/system/kube-proxy.service

$	systemctl	daemon-reload

$	systemctl	enable	kubelet

$	systemctl	start	kubelet

$	systemctl	status	kubelet

$	kubectl	get	csr

NAME								AGE							REQUESTOR											CONDITION

csr-2b308			4m								kubelet-bootstrap			Pending

$	kubectl	get	nodes

No	resources	found.

$	kubectl	certificate	approve	csr-2b308

certificatesigningrequest	"csr-2b308"	approved

$	kubectl	get	nodes

NAME								STATUS				AGE							VERSION

10.64.3.7			Ready					49m							v1.6.1

$	ls	-l	/etc/kubernetes/kubelet.kubeconfig

-rw-------	1	root	root	2284	Apr		7	02:07	/etc/kubernetes/kubelet.kubeconfig

$	ls	-l	/etc/kubernetes/ssl/kubelet*

-rw-r--r--	1	root	root	1046	Apr		7	02:07	/etc/kubernetes/ssl/kubelet-client.crt

-rw-------	1	root	root		227	Apr		7	02:04	/etc/kubernetes/ssl/kubelet-client.key

-rw-r--r--	1	root	root	1103	Apr		7	02:07	/etc/kubernetes/ssl/kubelet.crt

-rw-------	1	root	root	1675	Apr		7	02:07	/etc/kubernetes/ssl/kubelet.key

	

kube-proxy /etc/kubernetes/proxy

	

--hostname-override kubelet kube-proxy

Node iptables
kube-proxy --cluster-cidr --cluster-cidr --

masquerade-all kube-proxy Service IP SNAT

--kubeconfig kube-apiserver

 RoleBinding cluster-admin User system:kube-proxy Role system:node-

proxier Role kube-apiserver Proxy API

 unit kube-proxy.service

 kube-proxy

[Unit]

Description=Kubernetes	Kube-Proxy	Server

Documentation=https://github.com/GoogleCloudPlatform/kubernetes

After=network.target

[Service]

EnvironmentFile=-/etc/kubernetes/config

EnvironmentFile=-/etc/kubernetes/proxy

ExecStart=/usr/bin/kube-proxy	\

				$KUBE_LOGTOSTDERR	\
				$KUBE_LOG_LEVEL	\
				$KUBE_MASTER	\
				$KUBE_PROXY_ARGS

Restart=on-failure

LimitNOFILE=65536

[Install]

WantedBy=multi-user.target

###

#	kubernetes	proxy	config

#	default	config	should	be	adequate

#	Add	your	own!

KUBE_PROXY_ARGS="--bind-address=172.20.0.113	--hostname-override=172.20.0.113	--

kubeconfig=/etc/kubernetes/kube-proxy.kubeconfig	--cluster-cidr=10.254.0.0/16"

	

niginx service

$	systemctl	daemon-reload

$	systemctl	enable	kube-proxy

$	systemctl	start	kube-proxy

$	systemctl	status	kube-proxy

	

172.20.0.113:32724 172.20.0.114:32724 172.20.0.115:32724 nginx

$	kubectl	run	nginx	--replicas=2	--labels="run=load-balancer-example"	--image=sz-

pg-oam-docker-hub-001.tendcloud.com/library/nginx:1.9		--port=80

deployment	"nginx"	created

$	kubectl	expose	deployment	nginx	--type=NodePort	--name=example-service

service	"example-service"	exposed

$	kubectl	describe	svc	example-service

Name: example-service
Namespace: default
Labels: run=load-balancer-example
Annotations: <none>
Selector: run=load-balancer-example
Type: NodePort
IP: 10.254.62.207
Port: <unset> 80/TCP
NodePort: <unset> 32724/TCP
Endpoints: 172.30.60.2:80,172.30.94.2:80
Session	Affinity: None
Events: <none>
$	curl	"10.254.62.207:80"

<!DOCTYPE	html>

<html>

<head>

<title>Welcome	to	nginx!</title>

<style>

				body	{

								width:	35em;

								margin:	0	auto;

								font-family:	Tahoma,	Verdana,	Arial,	sans-serif;

				}

</style>

</head>

<body>

<h1>Welcome	to	nginx!</h1>

<p>If	you	see	this	page,	the	nginx	web	server	is	successfully	installed	and

working.	Further	configuration	is	required.</p>

<p>For	online	documentation	and	support	please	refer	to

nginx.org.

Commercial	support	is	available	at

nginx.com.</p>

<p>Thank	you	for	using	nginx.</p>

</body>

</html>

7. kubedns
yaml kubernetes/cluster/addons/dns

kubernetes

gcr.io/google_containers/k8s-dns-dnsmasq-nanny-amd64:1.14.1

gcr.io/google_containers/k8s-dns-kube-dns-amd64:1.14.1

gcr.io/google_containers/k8s-dns-sidecar-amd64:1.14.1

clone

sz-pg-oam-docker-hub-001.tendcloud.com/library/k8s-dns-dnsmasq-nanny-amd64:1.14.1

sz-pg-oam-docker-hub-001.tendcloud.com/library/k8s-dns-kube-dns-amd64:1.14.1

sz-pg-oam-docker-hub-001.tendcloud.com/library/k8s-dns-sidecar-amd64:1.14.1

index.tenxcloud.com/jimmy/k8s-dns-dnsmasq-nanny-amd64:1.14.1

index.tenxcloud.com/jimmy/k8s-dns-kube-dns-amd64:1.14.1

index.tenxcloud.com/jimmy/k8s-dns-sidecar-amd64:1.14.1

yaml

	

 yaml dns

kubedns-cm.yaml		

kubedns-sa.yaml		

kubedns-controller.yaml		

kubedns-svc.yaml

 RoleBinding

 RoleBinding system:kube-dns kube-system kube-dns ServiceAccount

 system:kube-dns Role Role kube-apiserver DNS API

	

kubedns-controller.yaml Pods kubedns-sa.yaml kube-dns

ServiceAccount kube-apiserver DNS API

 kube-dns ServiceAccount

 kube-dns

	

spec.clusterIP = 10.254.0.2 kube-dns Service IP IP kubelet -

-cluster-dns

$	kubectl	get	clusterrolebindings	system:kube-dns	-o	yaml

apiVersion:	rbac.authorization.k8s.io/v1beta1

kind:	ClusterRoleBinding

metadata:

		annotations:

				rbac.authorization.kubernetes.io/autoupdate:	"true"

		creationTimestamp:	2017-04-11T11:20:42Z

		labels:

				kubernetes.io/bootstrapping:	rbac-defaults

		name:	system:kube-dns

		resourceVersion:	"58"

		selfLink:	

/apis/rbac.authorization.k8s.io/v1beta1/clusterrolebindingssystem%3Akube-dns

		uid:	e61f4d92-1ea8-11e7-8cd7-f4e9d49f8ed0

roleRef:

		apiGroup:	rbac.authorization.k8s.io

		kind:	ClusterRole

		name:	system:kube-dns

subjects:

-	kind:	ServiceAccount

		name:	kube-dns

		namespace:	kube-system

$	diff	kubedns-svc.yaml.base	kubedns-svc.yaml

30c30

<			clusterIP:	__PILLAR__DNS__SERVER__

>			clusterIP:	10.254.0.2

 kube-dns Deployment

	

 RoleBinding kube-dns ServiceAccount kube-

apiserver DNS API

$	diff	kubedns-controller.yaml.base	kubedns-controller.yaml

58c58

<									image:	gcr.io/google_containers/k8s-dns-kube-dns-amd64:1.14.1

>									image:	sz-pg-oam-docker-hub-001.tendcloud.com/library/k8s-dns-kube-dns-

amd64:v1.14.1

88c88

<									-	--domain=__PILLAR__DNS__DOMAIN__.

>									-	--domain=cluster.local.

92c92

<									__PILLAR__FEDERATIONS__DOMAIN__MAP__

>									#__PILLAR__FEDERATIONS__DOMAIN__MAP__

110c110

<									image:	gcr.io/google_containers/k8s-dns-dnsmasq-nanny-amd64:1.14.1

>									image:	sz-pg-oam-docker-hub-001.tendcloud.com/library/k8s-dns-dnsmasq-

nanny-amd64:v1.14.1

129c129

<									-	--server=/__PILLAR__DNS__DOMAIN__/127.0.0.1#10053

>									-	--server=/cluster.local./127.0.0.1#10053

148c148

<									image:	gcr.io/google_containers/k8s-dns-sidecar-amd64:1.14.1

>									image:	sz-pg-oam-docker-hub-001.tendcloud.com/library/k8s-dns-sidecar-

amd64:v1.14.1

161,162c161,162

<									-	--

probe=kubedns,127.0.0.1:10053,kubernetes.default.svc.__PILLAR__DNS__DOMAIN__,5,A

<									-	--

probe=dnsmasq,127.0.0.1:53,kubernetes.default.svc.__PILLAR__DNS__DOMAIN__,5,A

>									-	--

probe=kubedns,127.0.0.1:10053,kubernetes.default.svc.cluster.local.,5,A

>									-	--probe=dnsmasq,127.0.0.1:53,kubernetes.default.svc.cluster.local.,5,A

	

 kubedns

 Deployment

	

Export Deployment, my-nginx

	

 Pod /etc/resolv.conf kubelet --cluster-dns --

cluster-domain my-nginx Cluster IP 10.254.179.239

$	pwd

/root/kubedns

$	ls	*.yaml

kubedns-cm.yaml		kubedns-controller.yaml		kubedns-sa.yaml		kubedns-svc.yaml

$	kubectl	create	-f	.

$	cat		my-nginx.yaml

apiVersion:	extensions/v1beta1

kind:	Deployment

metadata:

		name:	my-nginx

spec:

		replicas:	2

		template:

				metadata:

						labels:

								run:	my-nginx

				spec:

						containers:

						-	name:	my-nginx

								image:	sz-pg-oam-docker-hub-001.tendcloud.com/library/nginx:1.9

								ports:

								-	containerPort:	80

$	kubectl	create	-f	my-nginx.yaml

$	kubectl	expose	deploy	my-nginx

$	kubectl	get	services	--all-namespaces	|grep	my-nginx

default							my-nginx					10.254.179.239			<none>								80/TCP										42m

	

service

8. dashboard
kubernetes/cluster/addons/dashboard

	

 yaml dashboard

 kube-apiserver RBAC dashboard-controller.yaml

 ServiceAccount kube-apiserver API web

Forbidden	(403)

User	"system:serviceaccount:kube-system:default"	cannot	list	jobs.batch	in	the	

namespace	"default".	(get	jobs.batch)

dashboard-rbac.yaml dashboard ServiceAccount

Cluster Role view

dashboard-service

$	kubectl	create	-f	nginx-pod.yaml

$	kubectl	exec		nginx	-i	-t	--	/bin/bash

root@nginx:/#	cat	/etc/resolv.conf

nameserver	10.254.0.2

search	default.svc.cluster.local.	svc.cluster.local.	cluster.local.	tendcloud.com

options	ndots:5

root@nginx:/#	ping	my-nginx

PING	my-nginx.default.svc.cluster.local	(10.254.179.239):	56	data	bytes

76	bytes	from	119.147.223.109:	Destination	Net	Unreachable

^C---	my-nginx.default.svc.cluster.local	ping	statistics	---

root@nginx:/#	ping	kubernetes

PING	kubernetes.default.svc.cluster.local	(10.254.0.1):	56	data	bytes

^C---	kubernetes.default.svc.cluster.local	ping	statistics	---

11	packets	transmitted,	0	packets	received,	100%	packet	loss

root@nginx:/#	ping	kube-dns.kube-system.svc.cluster.local

PING	kube-dns.kube-system.svc.cluster.local	(10.254.0.2):	56	data	bytes

^C---	kube-dns.kube-system.svc.cluster.local	ping	statistics	---

6	packets	transmitted,	0	packets	received,	100%	packet	loss

$	ls	*.yaml

dashboard-controller.yaml		dashboard-service.yaml	dashboard-rbac.yaml

	

 NodePort nodeIP:nodePort dashboard

dashboard-controller

	

	

 NodePort

	

NodePort 30312 dashboard pod 80

 controller

	

dashboard

$	diff	dashboard-service.yaml.orig	dashboard-service.yaml

10a11

>			type:	NodePort

$	diff	dashboard-controller.yaml.orig	dashboard-controller.yaml

23c23

<									image:	gcr.io/google_containers/kubernetes-dashboard-amd64:v1.6.0

>									image:	sz-pg-oam-docker-hub-001.tendcloud.com/library/kubernetes-

dashboard-amd64:v1.6.0

$	pwd

/root/kubernetes/cluster/addons/dashboard

$	ls	*.yaml

dashboard-controller.yaml		dashboard-service.yaml

$	kubectl	create	-f		.

service	"kubernetes-dashboard"	created

deployment	"kubernetes-dashboard"	created

$	kubectl	get	services	kubernetes-dashboard	-n	kube-system

NAME																			CLUSTER-IP							EXTERNAL-IP			PORT(S)								AGE

kubernetes-dashboard			10.254.224.130			<nodes>							80:30312/TCP			25s

$	kubectl	get	deployment	kubernetes-dashboard		-n	kube-system

NAME																			DESIRED			CURRENT			UP-TO-DATE			AVAILABLE			AGE

kubernetes-dashboard			1									1									1												1											3m

$	kubectl	get	pods		-n	kube-system	|	grep	dashboard

kubernetes-dashboard-1339745653-pmn6z			1/1							Running			0										4m

kubernetes-dashboard NodePort http://NodeIP:nodePort

dashboard
 kube-apiserver dashboard https 6443 http 8080
 kubectl proxy dashboard

 kubectl proxy dashboard

	

 --accept-hosts dashboard “Unauthorized”

 URL http://172.20.0.113:8086/ui

http://172.20.0.113:8086/api/v1/proxy/namespaces/kube-

system/services/kubernetes-dashboard/#/workload?namespace=default

 kube-apiserver dashboard

	

 URL https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-

system/services/kubernetes-dashboard

 kube-apiserver
dashboard User "system:anonymous" cannot proxy services in the namespace "kube-
system". #5

admin.pem

openssl	pkcs12	-export	-in	admin.pem		-out	admin.p12	-inkey	admin-key.pem

admin.p12

$	kubectl	proxy	--address='172.20.0.113'	--port=8086	--accept-hosts='^*$'

Starting	to	serve	on	172.20.0.113:8086

$	kubectl	cluster-info

Kubernetes	master	is	running	at	https://172.20.0.113:6443

KubeDNS	is	running	at	https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-

system/services/kube-dns

kubernetes-dashboard	is	running	at	

https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-system/services/kubernetes-

dashboard

https://github.com/opsnull/follow-me-install-kubernetes-cluster/issues/5

https insecure port 8080
: http://172.20.0.113:8080/api/v1/proxy/namespaces/kube-system/services/kubernetes-

dashboard

 Heapster dashboard Pod Nodes CPU metric

9. Heapster
 heapster release heapster

	

 heapster-1.3.0/deploy/kube-config/influxdb

	

heapster rbac heapster-rbac.yaml

 yaml heapster

 grafana-deployment

$	wget	https://github.com/kubernetes/heapster/archive/v1.3.0.zip

$	unzip	v1.3.0.zip

$	mv	v1.3.0.zip	heapster-1.3.0

$	cd	heapster-1.3.0/deploy/kube-config/influxdb

$	ls	*.yaml

grafana-deployment.yaml		grafana-service.yaml		heapster-deployment.yaml		heapster-

service.yaml		influxdb-deployment.yaml		influxdb-service.yaml	heapster-rbac.yaml

https://github.com/kubernetes/heapster/releases

	

 kube-apiserver kubectl proxy grafana dashboard
GF_SERVER_ROOT_URL /api/v1/proxy/namespaces/kube-

system/services/monitoring-grafana/ grafana

http://10.64.3.7:8086/api/v1/proxy/namespaces/kube-system/services/monitoring-

grafana/api/dashboards/home

 heapster-deployment

	

 influxdb-deployment

influxdb HTTP API v1.1.0 admin
UI admin UI

 admin UI influxdb admin
 ConfigMap

manifests ConfigMap

$	diff	grafana-deployment.yaml.orig	grafana-deployment.yaml

16c16

<									image:	gcr.io/google_containers/heapster-grafana-amd64:v4.0.2

>									image:	sz-pg-oam-docker-hub-001.tendcloud.com/library/heapster-grafana-

amd64:v4.0.2

40,41c40,41

<											#	value:	/api/v1/proxy/namespaces/kube-system/services/monitoring-

grafana/

<											value:	/

>											value:	/api/v1/proxy/namespaces/kube-system/services/monitoring-

grafana/

>											#value:	/

$	diff	heapster-deployment.yaml.orig	heapster-deployment.yaml

16c16

<									image:	gcr.io/google_containers/heapster-amd64:v1.3.0-beta.1

>									image:	sz-pg-oam-docker-hub-001.tendcloud.com/library/heapster-

amd64:v1.3.0-beta.1

https://github.com/opsnull/follow-me-install-kubernetes-cluster/blob/master/manifests/heapster/influxdb-cm.yaml

	

 monitoring-influxdb Service

$	diff	influxdb-service.yaml.orig	influxdb-service.yaml

12a13

>			type:	NodePort

15a17,20

>					name:	http

>			-	port:	8083

>					targetPort:	8083

>					name:	admin

 NodePort admin influxdb
admin UI

$	#	 	influxdb	

$	docker	run	--rm	--entrypoint	'cat'		-ti	lvanneo/heapster-influxdb-amd64:v1.1.1	

/etc/config.toml	>config.toml.orig

$	cp	config.toml.orig	config.toml

$	#	 	admin	

$	vim	config.toml

$	diff	config.toml.orig	config.toml

35c35

<			enabled	=	false

>			enabled	=	true

$	#	 	ConfigMap	

$	kubectl	create	configmap	influxdb-config	--from-file=config.toml		-n	kube-system

configmap	"influxdb-config"	created

$	#	 	ConfigMap	 	Pod	

$	diff	influxdb-deployment.yaml.orig	influxdb-deployment.yaml

16c16

<									image:	grc.io/google_containers/heapster-influxdb-amd64:v1.1.1

>									image:	sz-pg-oam-docker-hub-001.tendcloud.com/library/heapster-influxdb-

amd64:v1.1.1

19a20,21

>									-	mountPath:	/etc/

>											name:	influxdb-config

22a25,27

>							-	name:	influxdb-config

>									configMap:

>											name:	influxdb-config

	

 Deployment

	

 Pods

	

 kubernets dashboard Nodes Pods CPU

$	pwd

/root/heapster-1.3.0/deploy/kube-config/influxdb

$	ls	*.yaml

grafana-service.yaml						heapster-rbac.yaml					influxdb-cm.yaml										

influxdb-service.yaml

grafana-deployment.yaml		heapster-deployment.yaml		heapster-service.yaml		influxdb-

deployment.yaml

$	kubectl	create	-f		.

deployment	"monitoring-grafana"	created

service	"monitoring-grafana"	created

deployment	"heapster"	created

serviceaccount	"heapster"	created

clusterrolebinding	"heapster"	created

service	"heapster"	created

configmap	"influxdb-config"	created

deployment	"monitoring-influxdb"	created

service	"monitoring-influxdb"	created

$	kubectl	get	deployments	-n	kube-system	|	grep	-E	'heapster|monitoring'

heapster															1									1									1												1											2m

monitoring-grafana					1									1									1												1											2m

monitoring-influxdb				1									1									1												1											2m

$	kubectl	get	pods	-n	kube-system	|	grep	-E	'heapster|monitoring'

heapster-110704576-gpg8v																1/1							Running			0										2m

monitoring-grafana-2861879979-9z89f					1/1							Running			0										2m

monitoring-influxdb-1411048194-lzrpc				1/1							Running			0										2m

 grafana

1. kube-apiserver

 monitoring-grafana URL

	

 URL http://172.20.0.113:8080/api/v1/proxy/namespaces/kube-

system/services/monitoring-grafana

2. kubectl proxy

$	kubectl	cluster-info

Kubernetes	master	is	running	at	https://172.20.0.113:6443

Heapster	is	running	at	https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-

system/services/heapster

KubeDNS	is	running	at	https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-

system/services/kube-dns

kubernetes-dashboard	is	running	at	

https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-

system/services/kubernetes-dashboard

monitoring-grafana	is	running	at	

https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-

system/services/monitoring-grafana

monitoring-influxdb	is	running	at	

https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-

system/services/monitoring-influxdb

To	further	debug	and	diagnose	cluster	problems,	use	'kubectl	cluster-info	

dump'.

	

 URL http://172.20.0.113:8086/api/v1/proxy/namespaces/kube-

system/services/monitoring-grafana

 influxdb admin UI

 influxdb http 8086 NodePort

$	kubectl	get	svc	-n	kube-system|grep	influxdb

monitoring-influxdb				10.254.22.46				<nodes>							8086:32299/TCP,8083:30269/TCP			

9m

 kube-apiserver influxdb admin UI
http://172.20.0.113:8080/api/v1/proxy/namespaces/kube-system/services/monitoring-

influxdb:8083/

 “Connection Settings” Host node IP Port 8086 nodePort
 32299 “Save” 172.20.0.113:32299

$	kubectl	proxy	--address='172.20.0.113'	--port=8086	--accept-hosts='^*$'

Starting	to	serve	on	172.20.0.113:8086

10. EFK
cluster/addons/fluentd-elasticsearch

$	ls	*.yaml

es-controller.yaml		es-service.yaml		fluentd-es-ds.yaml		kibana-controller.yaml		

kibana-service.yaml	efk-rbac.yaml

EFK efk-rbac.yaml serviceaccount efk

 yaml EFK

 es-controller.yaml

$	diff	es-controller.yaml.orig	es-controller.yaml

24c24

<							-	image:	gcr.io/google_containers/elasticsearch:v2.4.1-2

>							-	image:	sz-pg-oam-docker-hub-

001.tendcloud.com/library/elasticsearch:v2.4.1-2

 es-service.yaml

 fluentd-es-ds.yaml

$	diff	fluentd-es-ds.yaml.orig	fluentd-es-ds.yaml

26c26

<									image:	gcr.io/google_containers/fluentd-elasticsearch:1.22

>									image:	sz-pg-oam-docker-hub-001.tendcloud.com/library/fluentd-

elasticsearch:1.22

 kibana-controller.yaml

$	diff	kibana-controller.yaml.orig	kibana-controller.yaml

22c22

<									image:	gcr.io/google_containers/kibana:v4.6.1-1

>									image:	sz-pg-oam-docker-hub-001.tendcloud.com/library/kibana:v4.6.1-1

 Node

 DaemonSet fluentd-es-v1.22 nodeSelector beta.kubernetes.io/fluentd-ds-

ready=true fluentd Node

$	kubectl	get	nodes

NAME								STATUS				AGE							VERSION

172.20.0.113			Ready					1d								v1.6.0

$	kubectl	label	nodes	172.20.0.113	beta.kubernetes.io/fluentd-ds-ready=true

node	"172.20.0.113"	labeled

node

$	kubectl	create	-f	.

serviceaccount	"efk"	created

clusterrolebinding	"efk"	created

replicationcontroller	"elasticsearch-logging-v1"	created

service	"elasticsearch-logging"	created

daemonset	"fluentd-es-v1.22"	created

deployment	"kibana-logging"	created

service	"kibana-logging"	created

$	kubectl	get	deployment	-n	kube-system|grep	kibana

kibana-logging									1									1									1												1											2m

$	kubectl	get	pods	-n	kube-system|grep	-E	'elasticsearch|fluentd|kibana'

elasticsearch-logging-v1-mlstp										1/1							Running			0										1m

elasticsearch-logging-v1-nfbbf										1/1							Running			0										1m

fluentd-es-v1.22-31sm0																		1/1							Running			0										1m

fluentd-es-v1.22-bpgqs																		1/1							Running			0										1m

fluentd-es-v1.22-qmn7h																		1/1							Running			0										1m

kibana-logging-1432287342-0gdng									1/1							Running			0										1m

$	kubectl	get	service		-n	kube-system|grep	-E	'elasticsearch|kibana'

elasticsearch-logging			10.254.77.62				<none>								9200/TCP																								

2m

kibana-logging										10.254.8.113				<none>								5601/TCP																								

2m

kibana Pod (10-20) Cache tailf Pod

$	kubectl	logs	kibana-logging-1432287342-0gdng	-n	kube-system	-f

ELASTICSEARCH_URL=http://elasticsearch-logging:9200

server.basePath:	/api/v1/proxy/namespaces/kube-system/services/kibana-logging

{"type":"log","@timestamp":"2017-04-12T13:08:06Z","tags":

["info","optimize"],"pid":7,"message":"Optimizing	and	caching	bundles	for	kibana	and	

statusPage.	This	may	take	a	few	minutes"}

{"type":"log","@timestamp":"2017-04-12T13:18:17Z","tags":

["info","optimize"],"pid":7,"message":"Optimization	of	bundles	for	kibana	and	

statusPage	complete	in	610.40	seconds"}

{"type":"log","@timestamp":"2017-04-12T13:18:17Z","tags":

["status","plugin:kibana@1.0.0","info"],"pid":7,"state":"green","message":"Status	

changed	from	uninitialized	to	green	-	

Ready","prevState":"uninitialized","prevMsg":"uninitialized"}

{"type":"log","@timestamp":"2017-04-12T13:18:18Z","tags":

["status","plugin:elasticsearch@1.0.0","info"],"pid":7,"state":"yellow","message":"S

tatus	changed	from	uninitialized	to	yellow	-	Waiting	for	

Elasticsearch","prevState":"uninitialized","prevMsg":"uninitialized"}

{"type":"log","@timestamp":"2017-04-12T13:18:19Z","tags":

["status","plugin:kbn_vislib_vis_types@1.0.0","info"],"pid":7,"state":"green","messa

ge":"Status	changed	from	uninitialized	to	green	-	

Ready","prevState":"uninitialized","prevMsg":"uninitialized"}

{"type":"log","@timestamp":"2017-04-12T13:18:19Z","tags":

["status","plugin:markdown_vis@1.0.0","info"],"pid":7,"state":"green","message":"Sta

tus	changed	from	uninitialized	to	green	-	

Ready","prevState":"uninitialized","prevMsg":"uninitialized"}

{"type":"log","@timestamp":"2017-04-12T13:18:19Z","tags":

["status","plugin:metric_vis@1.0.0","info"],"pid":7,"state":"green","message":"Statu

s	changed	from	uninitialized	to	green	-	

Ready","prevState":"uninitialized","prevMsg":"uninitialized"}

{"type":"log","@timestamp":"2017-04-12T13:18:19Z","tags":

["status","plugin:spyModes@1.0.0","info"],"pid":7,"state":"green","message":"Status	

changed	from	uninitialized	to	green	-	

Ready","prevState":"uninitialized","prevMsg":"uninitialized"}

{"type":"log","@timestamp":"2017-04-12T13:18:19Z","tags":

["status","plugin:statusPage@1.0.0","info"],"pid":7,"state":"green","message":"Statu

s	changed	from	uninitialized	to	green	-	

Ready","prevState":"uninitialized","prevMsg":"uninitialized"}

{"type":"log","@timestamp":"2017-04-12T13:18:19Z","tags":

["status","plugin:table_vis@1.0.0","info"],"pid":7,"state":"green","message":"Status	

changed	from	uninitialized	to	green	-	

Ready","prevState":"uninitialized","prevMsg":"uninitialized"}

{"type":"log","@timestamp":"2017-04-12T13:18:19Z","tags":

["listening","info"],"pid":7,"message":"Server	running	at	http://0.0.0.0:5601"}

{"type":"log","@timestamp":"2017-04-12T13:18:24Z","tags":

["status","plugin:elasticsearch@1.0.0","info"],"pid":7,"state":"yellow","message":"S

tatus	changed	from	yellow	to	yellow	-	No	existing	Kibana	index	

found","prevState":"yellow","prevMsg":"Waiting	for	Elasticsearch"}

{"type":"log","@timestamp":"2017-04-12T13:18:29Z","tags":

["status","plugin:elasticsearch@1.0.0","info"],"pid":7,"state":"green","message":"St

atus	changed	from	yellow	to	green	-	Kibana	index	

ready","prevState":"yellow","prevMsg":"No	existing	Kibana	index	found"}

 kibana

1. kube-apiserver

 monitoring-grafana URL

$	kubectl	cluster-info

Kubernetes	master	is	running	at	https://172.20.0.113:6443

Elasticsearch	is	running	at	

https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-

system/services/elasticsearch-logging

Heapster	is	running	at	https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-

system/services/heapster

Kibana	is	running	at	https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-

system/services/kibana-logging

KubeDNS	is	running	at	https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-

system/services/kube-dns

kubernetes-dashboard	is	running	at	

https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-

system/services/kubernetes-dashboard

monitoring-grafana	is	running	at	

https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-

system/services/monitoring-grafana

monitoring-influxdb	is	running	at	

https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-

system/services/monitoring-influxdb

 URL https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-

system/services/kibana-logging/app/kibana

2. kubectl proxy

$	kubectl	proxy	--address='172.20.0.113'	--port=8086	--accept-hosts='^*$'

Starting	to	serve	on	172.20.0.113:8086

 URL http://172.20.0.113:8086/api/v1/proxy/namespaces/kube-

system/services/kibana-logging

 Settings -> Indices index mysql database Index	

contains	time-based	events logstash-* pattern Create ;

Create Time-filed name fluentd
/var/log/containers/ log

/var/lib/docker/containers/${CONTAINER_ID}/${CONTAINER_ID}-json.log

docker —log-dirver json-file journald docker

logging

https://docs.docker.com/engine/admin/logging/overview/#examples%5D(https://docs.docker.com/engine/admin/logging/overview/%23examples)

Index Discover ElasticSearch logging

kubernetes

	Kubernetes1.6集群部署完全指南 ——基于CentOS7二进制方式部署并开启TLS安全认证
	前言
	集群详情
	准备
	主机角色分配
	镜像准备

	1.创建 kubernetes 各组件 TLS 加密通信的证书和秘钥
	安装 CFSSL
	创建 CA (Certificate Authority)
	2.创建 kubernetes 证书
	创建 admin 证书
	创建 kube-proxy 证书
	校验证书
	使用 opsnssl 命令
	使用 cfssl-certinfo 命令
	分发证书
	参考

	2.创建 kubeconfig 文件
	创建 TLS Bootstrapping Token
	创建 kubelet bootstrapping kubeconfig 文件
	创建 kube-proxy kubeconfig 文件
	分发 kubeconfig 文件

	3.创建高可用 etcd 集群
	TLS 认证文件
	下载二进制文件
	创建 etcd 的 systemd unit 文件
	启动 etcd 服务
	验证服务

	4.下载和配置 kubectl 命令行工具
	下载 kubectl
	创建 kubectl kubeconfig 文件

	5.部署高可用 kubernetes master 集群
	TLS 证书文件
	下载最新版本的二进制文件
	配置和启动 kube-apiserver
	配置和启动 kube-controller-manager
	启动 kube-controller-manager
	配置和启动 kube-scheduler

	启动 kube-scheduler
	验证 master 节点功能

	6.部署kubernetes node节点
	目录和文件
	配置Flanneld
	安装和配置 kubelet
	下载最新的 kubelet 和 kube-proxy 二进制文件
	创建 kubelet 的service配置文件
	启动kublet
	通过 kublet 的 TLS 证书请求
	配置 kube-proxy
	启动 kube-proxy
	验证测试

	7.安装和配置 kubedns 插件
	系统预定义的 RoleBinding
	配置 kube-dns ServiceAccount
	配置 kube-dns 服务
	配置 kube-dns Deployment
	执行所有定义文件
	检查 kubedns 功能

	8.配置和安装 dashboard
	配置dashboard-service
	配置dashboard-controller
	执行所有定义文件
	检查执行结果
	访问dashboard
	通过 kubectl proxy 访问 dashboard
	通过 kube-apiserver 访问dashboard

	9.配置和安装 Heapster
	配置 grafana-deployment
	配置 heapster-deployment
	配置 influxdb-deployment
	配置 monitoring-influxdb Service
	执行所有定义文件
	检查执行结果
	访问 grafana
	访问 influxdb admin UI

	10.配置和安装 EFK
	配置 es-controller.yaml
	配置 es-service.yaml
	配置 fluentd-es-ds.yaml
	配置 kibana-controller.yaml
	给 Node 设置标签
	执行定义文件
	检查执行结果
	访问 kibana

