2013 Second European Workshop on Software Defined Networks

Exploiting OpenFlow resources towards
a Content-Centric LAN

Kostas Choumas, Nikos Makris
Thanasis Korakis and Leandros Tassiulas
Dept. of Computer & Communication Engineering
University of Thessaly
Volos Greece
{kohoumas, nimakris, korakis, leandros} @uth.gr

Abstract—The efficient utilization of emerging new technolo-
gies for the sake of implementing attracting and novel network
architectures is a major research challenge. As traditional ad-
dressing schemes seem to be rather inefficient to cope with
emerging Internet technologies, research concerning Content
Centric Networks (CCNs) has received a lot of attention by
the research community. CCNs are designed to treat content
as a primitive and therefore overcome the obstacles posed by
traditional addressing schemes. Utilizing Software Defined Net-
working (SDN) approaches can lead to a realistic implementation
of CCN scenarios. In this paper, we exploit the OpenFlow (OF)
technology, an SDN enabler, in order to efficiently create and
manage CCNs which are backward compatible with already
existing networking infrastructure. We evaluate our scheme by
using different load balancing policies, based on the actual
network state at every observation interval. The process is
completelly transparent to the end user, making our approach an
easy to integrate solution for all existing networking topologies.
Our solution is implemented and evaluated under a real life
scenario, utilizing distributed testbed resources, consisting of the
NITOS wireless testbed and PlanetLab-Europe (PLE).

Index Terms—OpenFlow; Content-Centric Networks;

I. INTRODUCTION

The motivation behind this work is inspired from the novel
technology of the Software Defined Networking (SDN) [1]
and the emerging idea of Content Centric Networking (CCN)
[2]. SDN is a constantly growing networking approach that
decouples network control (learning and forwarding decisions)
from network topology (junctions, interfaces, and the way they
peer). SDN equipment consists of special switches dedicated
to the data forwarding plane, while the network control plane
is assigned to decoupled from the physical device controllers.
Data plane refers to the part of the routing process that
includes the forwarding decisions of the packets arriving on the
inbound interfaces, while control plane concerns to drawing
the network map. OpenFlow (OF) [3], [4] is the most widely
used SDN enabler, with many networking equipment vendors
supporting its development. As a proof of concept, Google’s
Intranet has recently been completely redesigned to run under
OF. OF flexibility provides ease of design and deployment of
novel network architectures, even those inspired by the CCN
notion.

Content centric networks allow a user to focus only on the

978-1-4799-2433-2/13 $31.00 © 2013 IEEE
DOI 10.1109/EWSDN.2013.22

93

Max Ott

National Informations and
Communications Technology Australia (NICTA)
Sydney Australia
Max.Ott@nicta.com.au

requested content (data or services), rather than referring to
a specific host where that content will be retrieved from. A
widely used example of CCN is the Content Delivery Network
(CDN), which exploits the DNS protocol in order to map each
content request to one of the available servers, rendering the
user totally unaware of the actual content providing server. In
fact, the network serves content to users with high availability
and high performance, due to the existence of an underlying
large distributed system of servers deployed in multiple differ-
ent network sites. The mapping of each user content request to
the most appropriate server is done in a transparent way from
the users perspective, based on a variety of criteria including
the server availability, process load and/or proximity.

In this work, we focus on the redesign of the underlying
network plane by exploiting OF resources, towards creating
a Content-Centric LAN (CCLAN), an easy to adopt solu-
tion for content based delivery. The extended use of Virtual
Private Networks (VPNs) able to define broadcast-domains
with expanded coverage area all over the world, renders them
an excellent example of a use case, where our proposed
platform can be easily integrated. In the rest of the paper,
we refer to any single broadcast-domain as LAN, including
also the corresponding MANs/WANS that utilize leased lines
or VPNs. These MANs/WANs provide an abstract sense
of proximity, while the implicit geographical distances and
operational costs require the deployment of multiple servers
for the same content and the application of various and diverse
load balancing policies. Inspired by the CDN approach, we
introduce a mechanism of content mapping based on the MAC
layer and performed with the OF switches, rather than using
the less interactive application-layer DNS based one.

The implementation and experimentation with the proposed
CCLAN takes place over the federated environment of the
NITOS testbed [5] and PLE [6] resources. A CCLAN has been
deployed among a European-wide distributed system of PLE
computers and an OF enabled subnetwork of NITOS nodes,
featuring a TAP based VPN interconnection (operates with
MAC layer packets) among both sets of resources. As a proof
of concept, we evaluate our scheme under different load bal-
ancing policies, that affect the selection of the most appropriate
content providing server. The experimentation using a realistic

cps™

Conference Publishing Services

setup provides real measurements regarding the performance
and efficiency of the evaluated load balancing policies, which
is a significant effort towards the reliable comparison among
them.

The rest of the paper is organized as follows. In Section II
we introduce related work. Section III describes our proposed
scheme and Section IV presents the implementation features
in detail. Our evaluation of the overall solution is presented in
Section V, while Section VI concludes the paper.

II. RELATED WORK

CCN is recently gaining more and more attention from the
research community. Since its introduction [2], a major thrust
is evolving towards establishing a content centric Internet, as
it is prominent from the existence of many content oriented
research projects [7], [8], [9]. Many different aspects of
implementation have been proposed up to now, concerning the
CCN support by the current Internet infrastructure. However,
most of them require a costly redesign of the Internet backbone
or a complex setup of DNS servers in order to support content
based routing schemes.

More specifically, authors in [2] propose the adoption of
CCN based routers attached to current Internet backbone,
without interfering with the existing working setup. However,
these routers will be able to support only the link-state and
not the distance-vector routing protocols, while the authors in
[10] argue about the infeasibility of an Internet scale setup
of CCN based on current router hardware. In [11], authors
suggest either a novel protocol replacing IP or extending it,
introducing a new header field containing the content identifier.
This work has been further extended for the adoption of a new
transport layer protocol in [12]. However, the common feature
of the aforementioned architectures is the requirement for an
extended Internet redesign, making them inapplicable for the
time being.

On the other hand, CCN has come to life using the approach
of CDNs, without requiring complex low layer modifications
and relying on upper layer operations. In particular, CDNs rely
on a DNS based deployment [13] or transport/application layer
switches [14] to perform load balancing of content requests
over the Internet. Nevertheless, the inherent architecture of
CDNs renders any per packet load balancing policy inappli-
cable. Moreover, existing services that rely on IP rather than
URL to retrieve content cannot ensure “off-the-self” operation
with CDNs.

In order to deal with all aforementioned issues, we propose
an innovative scheme that uses IPv4/6 address to characterize
content. To implement our scheme, we involve OF in CCN. OF
has attracted attention from both the research community and
networking equipment vendors, since it enables experimenta-
tion with novel protocols using the networks we use everyday.
OF is highly customizable enabling packet forwarding based
on a variety of criteria except from the identification of the
MAC destination. In our approach, routing of contents can be
performed by using the unmodified TCP/IP Internet protocol
stack and the widely available OF network equipment. Finally,

94

we exploit the OF flexibility in order to apply different load
balancing policies on the content requests.

III. SCHEME DESIGN
A. LAN preliminaries

Current network architecture is based on the TCP/IP pro-
tocol stack, where the packet process in a computer or a
network device involves a separate subprocess in every layer.
The content is identified by a known and human readable URL,
which is translated through the application layer DNS to the
network address (IPv4/6) of the corresponding server. Then,
in order to map the network address to a specific physical
address (MAC), the Address Resolution Protocol (ARP) is
involved. The ARP operation is demonstrated in Figure 1(a).
When a client wants to retrieve the MAC address of a server
belonging to the same LAN, which therefore also belongs to
the same IP network, it broadcasts an ARP Request including
the known server IP address. Then, the server listens this
request, recognizes the including IP address as its own one
and responds with an ARP Reply that includes its own MAC
address. After this packet exchange, the client has all necessary
knowledge to initiate the content request. Simultaneously, the
network switches that establish the communication links are
appropriately updated to forward the content request and reply.

B. CCLAN presentation

The proposed scheme introduces a different operation of
a LAN, using appropriately configured OF switches instead
of Ethernet switches. The key novelty of our scheme is a
differentiated manipulation of the ARP messaging process. We
efficiently utilize the inherent intelligence of the OF switches
towards controlling and filtering of the ARP process.

In particular, the existing protocol stack remains unmodi-
fied, in order to ensure both backward compatibility and less
complex overall setup. Content identifying URLs are mapped
via the DNS protocol to specific IP addresses, that are able
to characterize content as well. Since we are talking about a
distributed setup of servers that all offer the same service, an
IP address is no more a unique identifier for a host machine,
but is used to denote the services offered by that specific host
(or group of hosts). Therefore, a host machine may feature
more than one IP address; This is feasible when using multiple
virtual interfaces. Moreover, the same IP address or content id
shall be used by many servers that provision the same service.
Dynamic advertisement of available services from the content
servers has been further discussed in [15], [16].

Apparently, when using the proposed setup in a LAN, an
ARP Request shall trigger many ARP Replies, concluding in
a conflict at the end user that has initiated the ARP process.
However, the OF switches can upon request select which ARP
Replies will be forwarded, thus imposing implicitly many load
balancing techniques among the available content servers, as
it is depicted in Figure 1(b).

In summary, the proposed process is described as follows;
when a CCLAN end-point requests a content, that has been
previously matched to an IP address from the corresponding

192.168.1.100 " 192.168.1.101

—_—

ARP Request
—
ARP Reply

192.168.1.1 192.168.1.2

(a) usual LAN

Fig. 1.

ARP
=, filtering

192.168.1.100 .M

192.168.1.100

|

ARP Request
—
ARP Reply

192.168.1.1
(b) Content-Centric LAN

The ARP messaging process in both cases of a usual LAN and a CCLAN. The dotted and solid lines correspond to the ARP Requests of .1 and .2

hosts respectively, for the .100 server. The bold lines indicate which ARP Request receivers answer with an ARP Reply.

DNS service, it issues an ARP Request, in search of the
requested content server MAC address. The OF switches that
intercept traffic in the LAN, will detect this ARP Request from
the initiating host and subsequently forward this packet to the
OF controller. The controller will examine the ARP packet,
and let it pass through the network, to all the destined content
servers with that matching IP address. The servers upon the
reception of the ARP Request, will issue back an ARP Reply,
reporting their MAC address to the host that initiated the
communication. However, as the ARP Replies pass through
the OF switches, they are also sent to the OF controller,
which will enable the forwarding of the most appropriate
ARP Reply, indicating one of the available content servers
based on the applied load balancing policy. In order to ensure
no performance degradation over existing solutions, the OF
switches are programmed to forward the first ARP Reply they
receive, the time that our system is initiated, and subsequently
impose our policies for the next ARP replies that arrive at the
switch.

C. Load balancing policies

As it is already mentioned, the proposed scheme has been
evaluated by running several experiments when imposing
different policies that balance the client requests.

The first examined balancing policy adopts a per client-
request scheme (Figure 2(a)), that maps every new client
request to a fixed content server. This Client-based policy
chooses to forward the ARP Reply of the least loaded server
to any new client that initiates an ARP Request. If the client
is not new, then the same server always replies to this user.
Since we just use these policies only for evaluating our overall
scheme, we expect that this shallow approach will be able to
perform efficiently even in a system that the clients feature
different bandwidth requirements.

The second evaluated policy (Figure 2(b)) is examining
the overall load on the flows upon the switches, and tries to
load balance traffic based on this criterion. Stemming from
the statistics that every OF switch holds, the OF controller
periodically checks the statistics of the amount of data sent
through the existing flows and estimates the total load of traffic
which is handled from each server. This Load-based policy

95

tries to dispense traffic among the available content servers.
Whenever it detects an overloaded server, it switches the most
demanding content request to another less congested server.
This approach manages to efficiently distribute traffic among
all the available servers.

The last policy we decided to study, is a Proximity-
based one (Figure 2(c)), that assigns a client to the server
that most quickly responded, focusing on a first-come-first-
served technique of forwarding the server ARP Replies. This
balancing policy may only be efficient enough in the case
of low network traffic. For the sake of this approach, we
assume that no additional delays due to network traffic can
occur during the ARP process.

IV. IMPLEMENTATION DETAILS
A. Experimentation platform

For the implementation of the proposed scheme of CCLAN,
a variety of software tools is used for setting up the in-
frastructure and managing the experimentation on top of
it. More particularly, an extended WAN spanning multiple
European countries is built, using VPN connections between
the participating resources, as it is illustrated in Figure 3.

Concerning the hardware engaged in our experimentation,
we employed two widely used European testbeds; The NITOS
wireless testbed in Greece, and the PlanetLab Europe, with
resources distributed all over Europe. NITOS is an outdoor
deployed, large-scale wireless testbed, currently consisting of
50 operational WiFi nodes in the premises of a University of
Thessaly campus building, interconnected through two Pronto
3290 OF switches. PlanetLab-Europe (PLE) is the European
portion of the publicly available PlanetLab testbed, a global
facility, offering a total of 1000+ nodes worldwide. Each
node is a dedicated server, that runs components of PlanetLab
services, a setup that is very useful for our experimentation.
Both PLE nodes and NITOS server have access to the Internet
with a public IP address.

The NITOS server and the NITOS nodes are interconnected
through two OF switches. Half of the NITOS’s nodes are
connected to one OF switch, while the rest are connected to
the second OF switch. The NITOS server is connected only
to one of the two switches, which are properly interconnected

(a) Client-based (the traffic from each smart-
phone is directed to a different server)

(b) Load-based (the large traffic from the right
smart-phone is shared on average to both servers)

(c) Proximity-based (all traffic is directed to the
most approximate server)

Fig. 2. Examples of load balancing effort per each policy. The solid lines are the network connections and the dotted/dashed lines represent the load traffic.

through a single link. Using a private VPN network, based
on the OpenVPN application, we managed to interconnect
via Ethernet-bridging all the PLE resources committed to
our experiments, by placing them under one TAP tunnel. A
VPN server is set up at the NITOS server, while the PLE
nodes are VPN clients, located at several different countries
spanning Europe. Bridging the NITOS server VPN interface
with the experimental interface that connects to one of the
two OpenFlow switches, all the resources operated in our
experiment belong to a single broadcast-domain. The OF
switches behavior is adjusted from an external OF controller,
located at the NITOS server. Finally, the proposed platform is
tested using one DNS server, utilizing the dnsmasq framework.
The DNS server is operating at the NITOS server.

The topology of our experimentation is illustrated in Figure
3. The two physical OF switches are interconnected through
a single link, while one of the NITOS nodes behaves as a
third OF switch, with the aid of the Open-vSwitch (OvS)
software [17]. The three switches shape a tree topology,
where one of the physical OF switches is the root. The node
operating the OvS software features a wireless interface too,
able to bridge wireless with wired traffic. We focused on a
realistic experimental scenario, where the content clients with
bandwidth requests which do not exceed the wireless link
capacity are wireless connected to the OvS and the rest of
them are connected to the leaf OF switch. All the content
clients request services from geographically distributed content
servers across the Europe. Such a scenario could be applied
in a real world situation, such as in the case of the VPN
of a European institution, with moving users who should be
efficiently served by multiple distributed servers.

Finally, our overall experimentation is orchestrated by the
cOntrol and Management Framework (OMF) [18]. NITOS and
PLE testbeds are already federated by exploiting the federation
capabilities of OMF, thus allowing for large scale experimen-
tation such as the one for evaluating our scheme. Using OMF,
we configure transparently the experiment topology, assign IP
addresses, raise the OF controller and generate traffic requests.
Using OMF’s corresponding library, OMF Measurement Li-
brary (OML), we managed to get measurement aggregation
from measurement points defined in the applications running,
into a SQLite database, in order to assess the results of our
experiments.

96

B. OF controller outlines

The OF controller is the most essential part of our design
and is implemented using the Trema framework [19]. The OF
controller receives indications from the switches, every time
the switches receive a frame of an unknown flow. Then, the
controller sets up an appropriate flow entry in the OF switch,
allowing the switch to forward immediately the following
packets without further controller involvements. The flows in
the proposed CCLAN are specified by the destination MAC
address and Ethernet type. If the Ethernet type is different
from ARP, the controller imposes the switch to forward the
packets in the same way that a normal switch does. In any
other case, the controller forwards or filters the ARP packets
accordingly, implementing one of the strategies that previous
Section III describes.

In the Client-based policy, the OF controller maintains an
appropriate hash table that maps each content identifier (server
IP address) to another hash table, which stores a mapping
between the clients and the servers. Each time that a new
ARP Request is initiated from a new client, the OF controller
checks the number of clients served by a specific server, and
chooses the one of the available ones with the least client
load. The controller is aware of all the possible servers in
the system, since it intercepts all the transmitted ARP Replies
(except for the initialization phase of our system, when the
controller chooses the server that responds first). Once the new
ARP Replies get transmitted, the OF controller will propagate
only the one of the previously selected server, filtering the rest
ones.

Concerning the implementation of the Load-based policy,
which is harder to implement, a periodical check of the statis-
tics held by the OF switches is required. The main difference
of this policy compared to the first one, is the extended
data storage structure that holds more information, except
for the client-server mapping, while it forces the periodical
reformation of this mapping. The client-server mapping is
done using the same building blocks that the previous policy
follows. However, after a specified time interval (10 secs for
our experiments) the OF controller collects the OF statistics
and estimates the current traffic load of each server, based on
the amount of total per port traffic. We remind that the OF
switches have an internal entry for each port, which maintains
its aggregate traffic load. Therefore, when the inspector OF
controller detects an overloaded server, it may reassign the

Fig. 3.

most demanding client from the overloaded server to the least
loaded one.

The last Proximity-based policy is the most straightfor-
ward implemented algorithm, since it does not require any
complicated data storage structure and the filtering decisions
are taken based on the first-come-first-served algorithm. More
specifically, the OF controller does not take into consideration
any traffic load statistics or number of clients per server, but
just forwards the first received ARP Reply, presuming that
it has been generated by the nearest located content server.
It can be easily concluded that this approach would be very
efficient in terms of response time, in case that the network is
not congested. However, in any other case, this specific policy
is actually ignoring any load balancing effort.

V. EXPERIMENTATION RESULTS

Our experiments are targeting at evaluating both the com-
pared policies as well as the validity of our CCLAN implemen-
tation. On one hand, we collected some accurate measurements
regarding the real performance of each implemented policy,
while on the other hand, we proved that our CCLAN imple-
mentation is working properly and can be efficiently integrated
in any production network. A total number of 15 nodes and 2
OF switches were committed to our experiment, 12 nodes (9
clients, 2 servers and 1 acting as an OvS) and the OF switches
from the NITOS testbed, and 3 nodes from the PLE testbed.
In order to differentiate the response times of the server nodes
that are located closely to each other, we injected artificial
delay on their incoming and outgoing links, using the netem
application for the NITOS nodes, and the netconfig application
for the PLE resources. Apart from the some remarkable switch
behavior that we noticed, on which we elaborate later, the
experimental results were expected.

For our experiments, we set up all the 5 servers in our
system with one [Pv4 address, emulating that all of them serve
the same content. We used the iperf application for generating
traffic to the server nodes, and cleared all ARP entries that the
clients in our system where holding. Three of our clients send
out traffic of 5 Mbps, three of 10 Mbps and the remaining

97

server

European-wide single broadcast domain using a VPN connection.

three of 15 Mbps. The clients that issue a 5 Mbps load (15
Mbps in summary) are assigned to the OvS, which operates at
IEEE 802.11a mode, in channel 100, thus ensuring no external
interference on the wireless link. We assume that the DNS
service responsible for mapping the content identifiers to an
IP address is running at a different network segment, and thus
we focus on the procedure after this mapping. Each experiment
was run 5 times, in order to ensure the validity of our results.
Our implementation proved to be a solid one, since in every
run we kept getting the same results in the way client requests
were allocated to the servers.

Concerning the evaluation of the Client-based policy (Figure
4(a)), the requests are always assigned to a corresponding
server, depending on the way that they arrive at the OF
controller. The fact that PLE 2 resource was more distant than
the other servers (ping delay from the NITOS server to PLE 2
had a 10 msecs extra overhead than PLE I and 5 msecs than
PLE 3) resulted in the assignment of less client requests to it,
in some of our experiment runs. Since we have 9 clients and 5
servers, we were expecting 2 requests per server would have
been assigned, apart from one server that would serve only
one client. The experimental results validate our assumption.

Regarding the Load-based policy, we can see that the overall
load was almost equally distributed among the servers in our
system (Figure 4(b)). The measurement of this policy has
been the hardest to measure, since clients were continuously
moving from the different servers each time that the ARP
timeout expired, and an ARP request was issued from the
corresponding client. The ARP timeout was set to 10 secs
for our experiments. The total aggregate throughput that each
client has transmitted was measured by summing up the total
bandwidth that the servers have received from each one.

Finally, concerning the third Proximity-based policy, all the
requests were assigned to the most proximate server, the one
operating on the NITOS side (Figure 4(b)). Remarkable is a
switch dependent behavior that we observed when evaluating
this policy. Since that we always select the server that has the
least ARP response time, we would expect that the similar
response times of the NITOS side servers would have resulted

100

80r

60

100 100
x x
g 80 & 80
S S
]]
o 60 o 60
g g
T T
E 40 g 40
) _)
s 20 s 20
(4 (4
> >
< <

PLE1 PLE2 PLE3 NIT1 NIT2

(a) Client-based policy

PLE1 PLE2 PLE3 NIT1 NIT2

(b) Load-based policy

40

20

Average load percentage (%)

PLE1 PLE2 PLE3 NIT1 NIT2

(c) Proximity-based policy

Fig. 4. Load balancing comparison among the three policies.

in the overall load to be balanced between these two servers.
However, after adapting our approach, we repeated the exper-
iments by using only NITOS nodes as content servers. The
results we got were similar, and after injecting delays on the
outgoing links of each server we concluded the following; the
switch scans the port serially based on their port identification
number. Therefore, if the ARP Replies arrive at the same time
(or within a time interval that the switch is not aware of), the
switch will assign the requests based on the port identifier.

TABLE I
ARP PROCESS DELAY COMPARISON

[usual LAN [3.8 ms
| CCLAN using policies (a), (b) & (c) [7.6 ms, 8.5 ms & 6.9 ms |

Concluding our evaluation, noteable are the extra delays
that our OF based system may impose in the ARP process.
We managed to measure the OF overhead that was imposed
on our scheme, after sniffing ARP packets that were using
our policies or the default ARP process. Our results show that
our process was suffering from an extra 3 — 5 msecs delay,
during the ARP process. The average delay we measured for
each ARP process is presented in Table I. This happens due
to the decoupled nature of the OF controller from the physical
switch, and the extra communication overhead that is imposed
between the controller and the switch for every unknown flow.
However, the results from our setup show that apart from
this initial mere overhead, no other degradation in the overall
system performance was imposed.

VI. CONCLUSION

In this paper we propose and implement a content-centric
network architecture for LANs/WANS, inspired by the widely
used OF technology and the insights behind the CCN ap-
proach. We designed and implemented three load balancing
policies, considering all possible desirable features that several
applications may require. We analyzed the performance of
these policies in terms of both load balancing and time
response. We intent to extend the current work towards two
directions: The first one is to apply the content-centric logic
in more extended networks, approaching the limits of the
Internet. The second one is to analyze further the evaluated
policies, researching deeper in the appropriate tuning of their
several configuration parameters, as well as to propose even
more sophisticated policies.

98

ACKNOWLEDGMENT
This work makes use of results produced by the FIBRE
project, co-funded by the Brazilian Council for Scientific
and Technological Development (CNPq) and by the European
Commission within its Seventh Framework Programme.

REFERENCES

[1] D. Staessens, S. Sharma, D. Colle, M. Pickavet, and P. Demeester.
Software defined networking: Meeting carrier grade requirements. In
Proceedings of IEEE LANMAN, 2011.

Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass,
Nicholas H. Briggs, and Rebecca L. Braynard. Networking named
content. In Proceedings of ACM CoNEXT, 2009.

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
OpenFlow: enabling innovation in campus networks. In Proceedings of
SIGCOMM, 2008.

Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin
Casado, Nick McKeown, and Guru Parulkar. Can the production network
be the testbed? In Proceedings of USENIX OSDI, 2010.

Nitlab: Network implementation testbed laboratory, http://nitlab.inf.uth.
gr/NITlab.

Ple: Planetlab europe, http://www.planet-lab.eu/.

Pursuit: Publish-subscribe internet technology, http://www.fp7-pursuit.
eu/PursuitWeb/.

4ward: Architecture and design for the future internet, http://www.
4ward-project.eu/.

Convergence, http://http://www.ict-convergence.eu/.

Diego Perino and Matteo Varvello. A Reality Check for Content Centric
Networking. In Proceedings of ACM ICN, 2011.

Andrea Detti, Nicola Blefari Melazzi, Stefano Salsano, and Matteo
Pomposini. CONET: a content centric inter-networking architecture.
In Proceedings of ACM SIGCOMM, 2011.

Stefano Salsano, Andrea Detti, Matteo Cancellieri, Matteo Pomposini,
and Nicola Blefari-Melazzi. Transport-layer issues in information centric
networks. In Proceedings of ACM ICN, 2012.

Alexandros Biliris, Chuck Cranor, Fred Douglis, Michael Rabinovich,
Sandeep Sibal, Oliver Spatscheck, and Walter Sturm. CDN brokering.
Comput. Commun., 25(4):393-402, Mar 2002.

M. Day, B. Cain, G. Tomlinson, and P. Rzewski. A Model for Content
Internetworking (CDI). RFC 3466 (Informational), February 2003.
Yan Chen, Randy H. Katz, Y H. Katz, and John D. Kubiatowicz. Dy-
namic Replica Placement for Scalable Content Delivery. In Proceedings
of IPTPS, 2002.

Chengdu Huang, Gang Zhou, Tarek F. Abdelzaher, Sang Hyuk Son,
and John A. Stankovic. Load Balancing in Bounded-Latency Content
Distribution. In Proceedings of IEEE RTSS, 2005.

Open virtual switch, http://openvswitch.org/.

Thierry Rakotoarivelo, Maximilian Ott, Guillaume Jourjon, and Ivan
Seskar. OMF: a control and management framework for networking
testbeds. SIGOPS Oper. Syst. Rev., 43(4):54-59, Jan 2010.

Trema: Full-stack openflow framework in ruby and c, http://trema.github.
com/trema/.

[2]

[3]

[41

[51

[6]
[71

[8]
[9]
[10]
(1]
[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

