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Abstract—The efficient utilization of emerging new technolo-
gies for the sake of implementing attracting and novel network
architectures is a major research challenge. As traditional ad-
dressing schemes seem to be rather inefficient to cope with
emerging Internet technologies, research concerning Content
Centric Networks (CCNs) has received a lot of attention by
the research community. CCNs are designed to treat content
as a primitive and therefore overcome the obstacles posed by
traditional addressing schemes. Utilizing Software Defined Net-
working (SDN) approaches can lead to a realistic implementation
of CCN scenarios. In this paper, we exploit the OpenFlow (OF)
technology, an SDN enabler, in order to efficiently create and
manage CCNs which are backward compatible with already
existing networking infrastructure. We evaluate our scheme by
using different load balancing policies, based on the actual
network state at every observation interval. The process is
completelly transparent to the end user, making our approach an
easy to integrate solution for all existing networking topologies.
Our solution is implemented and evaluated under a real life
scenario, utilizing distributed testbed resources, consisting of the
NITOS wireless testbed and PlanetLab-Europe (PLE).

Index Terms—OpenFlow; Content-Centric Networks;

I. INTRODUCTION

The motivation behind this work is inspired from the novel

technology of the Software Defined Networking (SDN) [1]

and the emerging idea of Content Centric Networking (CCN)

[2]. SDN is a constantly growing networking approach that

decouples network control (learning and forwarding decisions)

from network topology (junctions, interfaces, and the way they

peer). SDN equipment consists of special switches dedicated

to the data forwarding plane, while the network control plane

is assigned to decoupled from the physical device controllers.

Data plane refers to the part of the routing process that

includes the forwarding decisions of the packets arriving on the

inbound interfaces, while control plane concerns to drawing

the network map. OpenFlow (OF) [3], [4] is the most widely

used SDN enabler, with many networking equipment vendors

supporting its development. As a proof of concept, Google’s

Intranet has recently been completely redesigned to run under

OF. OF flexibility provides ease of design and deployment of

novel network architectures, even those inspired by the CCN

notion.

Content centric networks allow a user to focus only on the

requested content (data or services), rather than referring to

a specific host where that content will be retrieved from. A

widely used example of CCN is the Content Delivery Network

(CDN), which exploits the DNS protocol in order to map each

content request to one of the available servers, rendering the

user totally unaware of the actual content providing server. In

fact, the network serves content to users with high availability

and high performance, due to the existence of an underlying

large distributed system of servers deployed in multiple differ-

ent network sites. The mapping of each user content request to

the most appropriate server is done in a transparent way from

the users perspective, based on a variety of criteria including

the server availability, process load and/or proximity.

In this work, we focus on the redesign of the underlying

network plane by exploiting OF resources, towards creating

a Content-Centric LAN (CCLAN), an easy to adopt solu-

tion for content based delivery. The extended use of Virtual

Private Networks (VPNs) able to define broadcast-domains

with expanded coverage area all over the world, renders them

an excellent example of a use case, where our proposed

platform can be easily integrated. In the rest of the paper,

we refer to any single broadcast-domain as LAN, including

also the corresponding MANs/WANs that utilize leased lines

or VPNs. These MANs/WANs provide an abstract sense

of proximity, while the implicit geographical distances and

operational costs require the deployment of multiple servers

for the same content and the application of various and diverse

load balancing policies. Inspired by the CDN approach, we

introduce a mechanism of content mapping based on the MAC

layer and performed with the OF switches, rather than using

the less interactive application-layer DNS based one.

The implementation and experimentation with the proposed

CCLAN takes place over the federated environment of the

NITOS testbed [5] and PLE [6] resources. A CCLAN has been

deployed among a European-wide distributed system of PLE

computers and an OF enabled subnetwork of NITOS nodes,

featuring a TAP based VPN interconnection (operates with

MAC layer packets) among both sets of resources. As a proof

of concept, we evaluate our scheme under different load bal-

ancing policies, that affect the selection of the most appropriate

content providing server. The experimentation using a realistic
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setup provides real measurements regarding the performance

and efficiency of the evaluated load balancing policies, which

is a significant effort towards the reliable comparison among

them.

The rest of the paper is organized as follows. In Section II

we introduce related work. Section III describes our proposed

scheme and Section IV presents the implementation features

in detail. Our evaluation of the overall solution is presented in

Section V, while Section VI concludes the paper.

II. RELATED WORK

CCN is recently gaining more and more attention from the

research community. Since its introduction [2], a major thrust

is evolving towards establishing a content centric Internet, as

it is prominent from the existence of many content oriented

research projects [7], [8], [9]. Many different aspects of

implementation have been proposed up to now, concerning the

CCN support by the current Internet infrastructure. However,

most of them require a costly redesign of the Internet backbone

or a complex setup of DNS servers in order to support content

based routing schemes.

More specifically, authors in [2] propose the adoption of

CCN based routers attached to current Internet backbone,

without interfering with the existing working setup. However,

these routers will be able to support only the link-state and

not the distance-vector routing protocols, while the authors in

[10] argue about the infeasibility of an Internet scale setup

of CCN based on current router hardware. In [11], authors

suggest either a novel protocol replacing IP or extending it,

introducing a new header field containing the content identifier.

This work has been further extended for the adoption of a new

transport layer protocol in [12]. However, the common feature

of the aforementioned architectures is the requirement for an

extended Internet redesign, making them inapplicable for the

time being.

On the other hand, CCN has come to life using the approach

of CDNs, without requiring complex low layer modifications

and relying on upper layer operations. In particular, CDNs rely

on a DNS based deployment [13] or transport/application layer

switches [14] to perform load balancing of content requests

over the Internet. Nevertheless, the inherent architecture of

CDNs renders any per packet load balancing policy inappli-

cable. Moreover, existing services that rely on IP rather than

URL to retrieve content cannot ensure “off-the-self” operation

with CDNs.

In order to deal with all aforementioned issues, we propose

an innovative scheme that uses IPv4/6 address to characterize

content. To implement our scheme, we involve OF in CCN. OF

has attracted attention from both the research community and

networking equipment vendors, since it enables experimenta-

tion with novel protocols using the networks we use everyday.

OF is highly customizable enabling packet forwarding based

on a variety of criteria except from the identification of the

MAC destination. In our approach, routing of contents can be

performed by using the unmodified TCP/IP Internet protocol

stack and the widely available OF network equipment. Finally,

we exploit the OF flexibility in order to apply different load

balancing policies on the content requests.

III. SCHEME DESIGN

A. LAN preliminaries

Current network architecture is based on the TCP/IP pro-

tocol stack, where the packet process in a computer or a

network device involves a separate subprocess in every layer.

The content is identified by a known and human readable URL,

which is translated through the application layer DNS to the

network address (IPv4/6) of the corresponding server. Then,

in order to map the network address to a specific physical

address (MAC), the Address Resolution Protocol (ARP) is

involved. The ARP operation is demonstrated in Figure 1(a).

When a client wants to retrieve the MAC address of a server

belonging to the same LAN, which therefore also belongs to

the same IP network, it broadcasts an ARP Request including

the known server IP address. Then, the server listens this

request, recognizes the including IP address as its own one

and responds with an ARP Reply that includes its own MAC

address. After this packet exchange, the client has all necessary

knowledge to initiate the content request. Simultaneously, the

network switches that establish the communication links are

appropriately updated to forward the content request and reply.

B. CCLAN presentation

The proposed scheme introduces a different operation of

a LAN, using appropriately configured OF switches instead

of Ethernet switches. The key novelty of our scheme is a

differentiated manipulation of the ARP messaging process. We

efficiently utilize the inherent intelligence of the OF switches

towards controlling and filtering of the ARP process.

In particular, the existing protocol stack remains unmodi-

fied, in order to ensure both backward compatibility and less

complex overall setup. Content identifying URLs are mapped

via the DNS protocol to specific IP addresses, that are able

to characterize content as well. Since we are talking about a

distributed setup of servers that all offer the same service, an

IP address is no more a unique identifier for a host machine,

but is used to denote the services offered by that specific host

(or group of hosts). Therefore, a host machine may feature

more than one IP address; This is feasible when using multiple

virtual interfaces. Moreover, the same IP address or content id

shall be used by many servers that provision the same service.

Dynamic advertisement of available services from the content

servers has been further discussed in [15], [16].

Apparently, when using the proposed setup in a LAN, an

ARP Request shall trigger many ARP Replies, concluding in

a conflict at the end user that has initiated the ARP process.

However, the OF switches can upon request select which ARP

Replies will be forwarded, thus imposing implicitly many load

balancing techniques among the available content servers, as

it is depicted in Figure 1(b).

In summary, the proposed process is described as follows;

when a CCLAN end-point requests a content, that has been

previously matched to an IP address from the corresponding
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(a) usual LAN (b) Content-Centric LAN

Fig. 1. The ARP messaging process in both cases of a usual LAN and a CCLAN. The dotted and solid lines correspond to the ARP Requests of .1 and .2
hosts respectively, for the .100 server. The bold lines indicate which ARP Request receivers answer with an ARP Reply.

DNS service, it issues an ARP Request, in search of the

requested content server MAC address. The OF switches that

intercept traffic in the LAN, will detect this ARP Request from

the initiating host and subsequently forward this packet to the

OF controller. The controller will examine the ARP packet,

and let it pass through the network, to all the destined content

servers with that matching IP address. The servers upon the

reception of the ARP Request, will issue back an ARP Reply,

reporting their MAC address to the host that initiated the

communication. However, as the ARP Replies pass through

the OF switches, they are also sent to the OF controller,

which will enable the forwarding of the most appropriate

ARP Reply, indicating one of the available content servers

based on the applied load balancing policy. In order to ensure

no performance degradation over existing solutions, the OF

switches are programmed to forward the first ARP Reply they

receive, the time that our system is initiated, and subsequently

impose our policies for the next ARP replies that arrive at the

switch.

C. Load balancing policies

As it is already mentioned, the proposed scheme has been

evaluated by running several experiments when imposing

different policies that balance the client requests.

The first examined balancing policy adopts a per client-

request scheme (Figure 2(a)), that maps every new client

request to a fixed content server. This Client-based policy
chooses to forward the ARP Reply of the least loaded server

to any new client that initiates an ARP Request. If the client

is not new, then the same server always replies to this user.

Since we just use these policies only for evaluating our overall

scheme, we expect that this shallow approach will be able to

perform efficiently even in a system that the clients feature

different bandwidth requirements.

The second evaluated policy (Figure 2(b)) is examining

the overall load on the flows upon the switches, and tries to

load balance traffic based on this criterion. Stemming from

the statistics that every OF switch holds, the OF controller

periodically checks the statistics of the amount of data sent

through the existing flows and estimates the total load of traffic

which is handled from each server. This Load-based policy

tries to dispense traffic among the available content servers.

Whenever it detects an overloaded server, it switches the most

demanding content request to another less congested server.

This approach manages to efficiently distribute traffic among

all the available servers.

The last policy we decided to study, is a Proximity-
based one (Figure 2(c)), that assigns a client to the server

that most quickly responded, focusing on a first-come-first-

served technique of forwarding the server ARP Replies. This

balancing policy may only be efficient enough in the case

of low network traffic. For the sake of this approach, we

assume that no additional delays due to network traffic can

occur during the ARP process.

IV. IMPLEMENTATION DETAILS

A. Experimentation platform

For the implementation of the proposed scheme of CCLAN,

a variety of software tools is used for setting up the in-

frastructure and managing the experimentation on top of

it. More particularly, an extended WAN spanning multiple

European countries is built, using VPN connections between

the participating resources, as it is illustrated in Figure 3.

Concerning the hardware engaged in our experimentation,

we employed two widely used European testbeds; The NITOS

wireless testbed in Greece, and the PlanetLab Europe, with

resources distributed all over Europe. NITOS is an outdoor

deployed, large-scale wireless testbed, currently consisting of

50 operational WiFi nodes in the premises of a University of

Thessaly campus building, interconnected through two Pronto

3290 OF switches. PlanetLab-Europe (PLE) is the European

portion of the publicly available PlanetLab testbed, a global

facility, offering a total of 1000+ nodes worldwide. Each

node is a dedicated server, that runs components of PlanetLab

services, a setup that is very useful for our experimentation.

Both PLE nodes and NITOS server have access to the Internet

with a public IP address.

The NITOS server and the NITOS nodes are interconnected

through two OF switches. Half of the NITOS’s nodes are

connected to one OF switch, while the rest are connected to

the second OF switch. The NITOS server is connected only

to one of the two switches, which are properly interconnected
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(a) Client-based (the traffic from each smart-
phone is directed to a different server)

(b) Load-based (the large traffic from the right
smart-phone is shared on average to both servers)

(c) Proximity-based (all traffic is directed to the
most approximate server)

Fig. 2. Examples of load balancing effort per each policy. The solid lines are the network connections and the dotted/dashed lines represent the load traffic.

through a single link. Using a private VPN network, based

on the OpenVPN application, we managed to interconnect

via Ethernet-bridging all the PLE resources committed to

our experiments, by placing them under one TAP tunnel. A

VPN server is set up at the NITOS server, while the PLE

nodes are VPN clients, located at several different countries

spanning Europe. Bridging the NITOS server VPN interface

with the experimental interface that connects to one of the

two OpenFlow switches, all the resources operated in our

experiment belong to a single broadcast-domain. The OF

switches behavior is adjusted from an external OF controller,

located at the NITOS server. Finally, the proposed platform is

tested using one DNS server, utilizing the dnsmasq framework.

The DNS server is operating at the NITOS server.

The topology of our experimentation is illustrated in Figure

3. The two physical OF switches are interconnected through

a single link, while one of the NITOS nodes behaves as a

third OF switch, with the aid of the Open-vSwitch (OvS)

software [17]. The three switches shape a tree topology,

where one of the physical OF switches is the root. The node

operating the OvS software features a wireless interface too,

able to bridge wireless with wired traffic. We focused on a

realistic experimental scenario, where the content clients with

bandwidth requests which do not exceed the wireless link

capacity are wireless connected to the OvS and the rest of

them are connected to the leaf OF switch. All the content

clients request services from geographically distributed content

servers across the Europe. Such a scenario could be applied

in a real world situation, such as in the case of the VPN

of a European institution, with moving users who should be

efficiently served by multiple distributed servers.

Finally, our overall experimentation is orchestrated by the

cOntrol and Management Framework (OMF) [18]. NITOS and

PLE testbeds are already federated by exploiting the federation

capabilities of OMF, thus allowing for large scale experimen-

tation such as the one for evaluating our scheme. Using OMF,

we configure transparently the experiment topology, assign IP

addresses, raise the OF controller and generate traffic requests.

Using OMF’s corresponding library, OMF Measurement Li-

brary (OML), we managed to get measurement aggregation

from measurement points defined in the applications running,

into a SQLite database, in order to assess the results of our

experiments.

B. OF controller outlines

The OF controller is the most essential part of our design

and is implemented using the Trema framework [19]. The OF

controller receives indications from the switches, every time

the switches receive a frame of an unknown flow. Then, the

controller sets up an appropriate flow entry in the OF switch,

allowing the switch to forward immediately the following

packets without further controller involvements. The flows in

the proposed CCLAN are specified by the destination MAC

address and Ethernet type. If the Ethernet type is different

from ARP, the controller imposes the switch to forward the

packets in the same way that a normal switch does. In any

other case, the controller forwards or filters the ARP packets

accordingly, implementing one of the strategies that previous

Section III describes.

In the Client-based policy, the OF controller maintains an

appropriate hash table that maps each content identifier (server

IP address) to another hash table, which stores a mapping

between the clients and the servers. Each time that a new

ARP Request is initiated from a new client, the OF controller

checks the number of clients served by a specific server, and

chooses the one of the available ones with the least client

load. The controller is aware of all the possible servers in

the system, since it intercepts all the transmitted ARP Replies

(except for the initialization phase of our system, when the

controller chooses the server that responds first). Once the new

ARP Replies get transmitted, the OF controller will propagate

only the one of the previously selected server, filtering the rest

ones.

Concerning the implementation of the Load-based policy,

which is harder to implement, a periodical check of the statis-

tics held by the OF switches is required. The main difference

of this policy compared to the first one, is the extended

data storage structure that holds more information, except

for the client-server mapping, while it forces the periodical

reformation of this mapping. The client-server mapping is

done using the same building blocks that the previous policy

follows. However, after a specified time interval (10 secs for

our experiments) the OF controller collects the OF statistics

and estimates the current traffic load of each server, based on

the amount of total per port traffic. We remind that the OF

switches have an internal entry for each port, which maintains

its aggregate traffic load. Therefore, when the inspector OF

controller detects an overloaded server, it may reassign the
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Fig. 3. European-wide single broadcast domain using a VPN connection.

most demanding client from the overloaded server to the least

loaded one.

The last Proximity-based policy is the most straightfor-

ward implemented algorithm, since it does not require any

complicated data storage structure and the filtering decisions

are taken based on the first-come-first-served algorithm. More

specifically, the OF controller does not take into consideration

any traffic load statistics or number of clients per server, but

just forwards the first received ARP Reply, presuming that

it has been generated by the nearest located content server.

It can be easily concluded that this approach would be very

efficient in terms of response time, in case that the network is

not congested. However, in any other case, this specific policy

is actually ignoring any load balancing effort.

V. EXPERIMENTATION RESULTS

Our experiments are targeting at evaluating both the com-

pared policies as well as the validity of our CCLAN implemen-

tation. On one hand, we collected some accurate measurements

regarding the real performance of each implemented policy,

while on the other hand, we proved that our CCLAN imple-

mentation is working properly and can be efficiently integrated

in any production network. A total number of 15 nodes and 2
OF switches were committed to our experiment, 12 nodes (9
clients, 2 servers and 1 acting as an OvS) and the OF switches

from the NITOS testbed, and 3 nodes from the PLE testbed.

In order to differentiate the response times of the server nodes

that are located closely to each other, we injected artificial

delay on their incoming and outgoing links, using the netem
application for the NITOS nodes, and the netconfig application

for the PLE resources. Apart from the some remarkable switch

behavior that we noticed, on which we elaborate later, the

experimental results were expected.

For our experiments, we set up all the 5 servers in our

system with one IPv4 address, emulating that all of them serve

the same content. We used the iperf application for generating

traffic to the server nodes, and cleared all ARP entries that the

clients in our system where holding. Three of our clients send

out traffic of 5 Mbps, three of 10 Mbps and the remaining

three of 15 Mbps. The clients that issue a 5 Mbps load (15
Mbps in summary) are assigned to the OvS, which operates at

IEEE 802.11a mode, in channel 100, thus ensuring no external

interference on the wireless link. We assume that the DNS

service responsible for mapping the content identifiers to an

IP address is running at a different network segment, and thus

we focus on the procedure after this mapping. Each experiment

was run 5 times, in order to ensure the validity of our results.

Our implementation proved to be a solid one, since in every

run we kept getting the same results in the way client requests

were allocated to the servers.

Concerning the evaluation of the Client-based policy (Figure

4(a)), the requests are always assigned to a corresponding

server, depending on the way that they arrive at the OF

controller. The fact that PLE 2 resource was more distant than

the other servers (ping delay from the NITOS server to PLE 2
had a 10 msecs extra overhead than PLE 1 and 5 msecs than

PLE 3) resulted in the assignment of less client requests to it,

in some of our experiment runs. Since we have 9 clients and 5
servers, we were expecting 2 requests per server would have

been assigned, apart from one server that would serve only

one client. The experimental results validate our assumption.

Regarding the Load-based policy, we can see that the overall

load was almost equally distributed among the servers in our

system (Figure 4(b)). The measurement of this policy has

been the hardest to measure, since clients were continuously

moving from the different servers each time that the ARP

timeout expired, and an ARP request was issued from the

corresponding client. The ARP timeout was set to 10 secs

for our experiments. The total aggregate throughput that each

client has transmitted was measured by summing up the total

bandwidth that the servers have received from each one.

Finally, concerning the third Proximity-based policy, all the

requests were assigned to the most proximate server, the one

operating on the NITOS side (Figure 4(b)). Remarkable is a

switch dependent behavior that we observed when evaluating

this policy. Since that we always select the server that has the

least ARP response time, we would expect that the similar

response times of the NITOS side servers would have resulted
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(a) Client-based policy (b) Load-based policy (c) Proximity-based policy

Fig. 4. Load balancing comparison among the three policies.

in the overall load to be balanced between these two servers.

However, after adapting our approach, we repeated the exper-

iments by using only NITOS nodes as content servers. The

results we got were similar, and after injecting delays on the

outgoing links of each server we concluded the following; the

switch scans the port serially based on their port identification

number. Therefore, if the ARP Replies arrive at the same time

(or within a time interval that the switch is not aware of), the

switch will assign the requests based on the port identifier.

TABLE I
ARP PROCESS DELAY COMPARISON

usual LAN 3.8 ms
CCLAN using policies (a), (b) & (c) 7.6 ms, 8.5 ms & 6.9 ms

Concluding our evaluation, noteable are the extra delays

that our OF based system may impose in the ARP process.

We managed to measure the OF overhead that was imposed

on our scheme, after sniffing ARP packets that were using

our policies or the default ARP process. Our results show that

our process was suffering from an extra 3 − 5 msecs delay,

during the ARP process. The average delay we measured for

each ARP process is presented in Table I. This happens due

to the decoupled nature of the OF controller from the physical

switch, and the extra communication overhead that is imposed

between the controller and the switch for every unknown flow.

However, the results from our setup show that apart from

this initial mere overhead, no other degradation in the overall

system performance was imposed.

VI. CONCLUSION

In this paper we propose and implement a content-centric

network architecture for LANs/WANs, inspired by the widely

used OF technology and the insights behind the CCN ap-

proach. We designed and implemented three load balancing

policies, considering all possible desirable features that several

applications may require. We analyzed the performance of

these policies in terms of both load balancing and time

response. We intent to extend the current work towards two

directions: The first one is to apply the content-centric logic

in more extended networks, approaching the limits of the

Internet. The second one is to analyze further the evaluated

policies, researching deeper in the appropriate tuning of their

several configuration parameters, as well as to propose even

more sophisticated policies.
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