o Openflow 1/H X Z: it

|y Sy N
gk A 5




]
BRI NASRIT, (T AN A EE, B s
B TUAN IR 2 10 (58 e T 7 o 2

/1

4 O I
@D

L

\_ @ Y




Stepl: %A/ B M

NEEMEAEITT 5D PLUARGER T 2~ 8% (4D
AT, A ELORUEAT S A3 T 2 (R B TE
(H e P B _E T gl R e ) ) i 2



Step2: WUSHNESHR

-~

\_

NS AR, ACE I ERUNIE R AT H B A L5 7 1A
B BRFRI— RE A2 LR A ?




Y INEPS ’E?F?I‘ILFE'JE%%/\E%H?%TE%EEEEZ%HT £ 5
FHEChRS B, (BB bR B L MR AL




4

AL




E:IEDEI\%_‘/I\I‘EHI‘%E:
AREM N, IAEAEIXLE AN EAHEE, 34
s B TR L 55 7

7 ) ) p > " = . Mo
N N V4 N N

- — — i
N\ N\ N
7 ZS 23 ZS



RPN IR R 2 ieeg ) AR (G4)
EREM ST ENLRA1E 5 Y I8






Step3: FENLHACRYES ML

Step2 HH HI %% & 3R e H e AR 4E P DL A2 BT



e M 25 e A 7 3
ﬁﬁﬁ&%@ﬁﬁlﬁlﬁ‘ﬁmﬁb R UE B2
LA ES AR

e ———
Operating
System

Specialized Packet J
e

Forwarding Hardware rOtOCOI ‘ Operating
System

Specialized Packet
Forwarding Hardware

S ——————
Operating
System

Specialized Packet
Forwarding Hardware Operating
System

Specialized Packet
Forwarding Hardware

p rOtOCO ‘ Operating ‘
System

Specialized Packet

Forwarding Hardware



fe gt 28 e e TAE 7 2

e Hub

o THERH. FETWHln K
e Hl%: Flood

mm  L2Switch

o THEHH: FTMACHINER K
o FFM&: STP+MACHINE->]

= Router

o TAFIE: FT R K
o TRMG: FRASESH+3hASH H ML

SRR o3 A AU (SR B il 8 N i A B



%‘75\% SELYOF

39 0. VT e AR AiE Wb 4 7 ik
_ RFIEL bFR 71
P RRAE2 Wb 71532

CO N A5 N

HUBHJ¥E KR &5 1

ﬁt%’@wﬁ'ﬂﬁ%
M AR TG i H 5%
M LAt BT A S 156

M LAt BT A i 58 A




L2Switch 1145 &K £ 451

B B AL HT7 15
_ g El’JMACl H a1
2 e i 12

Router ') ¥% i 3R 25 14

E BIP M B E A b B vk
_ H 1P B2 ol
2 pllgke EEY

N Rl HEAN




B e XL 2%

<:::> B s B A T 2 £
B, SR ] T

— -

=< Vel ST Al HUR
- i s,
P R B

fetE TAE

A e 25 B 285 Ve 26 Z TRIANBAT AR AR IR, 2%
R R 3R e ) 2R G B A B

T2l A%

55 2% g 2 2 A e B

& H AHEE



3T Openflow LB A XE
XH?%
SDN ¥ £& 73 9 PR 5 ]

1. EHE W (B~ 1H):  Traffic
2. {54 (#=HI°F1H): Openflow Protocol




OpenflowsZ#41 (Openflow1.0)

OpenflowsZ 1 H )85 & R AR NI (Flow table)
AL B e B UL BC R AR AN B b B A B T v

B B UG FC R ALE -

o —Z: HHIANMGH (Ingress Port)

e JZ: JEMACHEHE (Ethersource) . HHRJMACHEHE (Etherdst) . DAY
(EtherType) .« VLANARZE (VLANid) . VLANPLSEZE (VLAN priority)

o« =JZ: JEIP UPsrc) « HIIP (Pdst) « IPTMUFE: (IPproto) . IPARSSISHY
CIP ToS bits)

« DUE: TCP/UDPJE:ITE (TCP/UDP src port) « TCP/UDP H K15 (TCP/UDP
dst port)

Ingress Ether| Ether| Ether| VLAN VLAN IP IP IP 1 2 TCP/| TCP/
Port | sourcq dst type | id pri- sre dst proto| ToS | UDP | UDP
or- bits sre dst
1ty port | port
KA AL A R T
. HK

. BBk



Openflow1.0X 2 45 £4, UL B FF ik 11 38 7 72

struct ofp_match {
uint32_t wildcards; /* Wildcard fields. */
uintl6_t in_port; /* Input switch port. */
uint8_t dl_src[OFP_ETH_ALEN]; /* Ethernet source address. */
uint8_t dl_dst[OFP_ETH_ALEN]; /* Ethernet destination address. */

uinti16_t dl_vlan; /* Input VLAN id. */

uint8_t dl_vlan_pcp; /* Input VLAN priority. */

uint8_t padi[i]; /* Align to 64-bits */

uint16_t dl_type; /* Ethernet frame type. */

uint8_t nw_tos; /* IP ToS (actually DSCP field, 6 bits). x*/

uint8_t nw_proto; /* IP protocol or lower 8 bits of
* ARP opcode. */

uint8_t pad2[2]; /* Align to 64-bits */

uint32_t nw_src; /* IP source address. */

uint32_t nw_dst; /* IP destination address. */

uinti6_t tp_src; /* TCP/UDP source port. */

uinti16_t tp_dst; /* TCP/UDP destination port. */

¥3
OFP_ASSERT (sizeof (struct ofp_match) == 40);



ofp_matchHJwildcard

OFPFW_IN_PORT = 1 << 0, /* Switch input port. =/
OFPFW_DL_VLAN =1 << 1, /= VLAN id. */

OFPFW_DL_SRC = 1 << 2, /* Ethernet source address. */
OFPFW_DL_DST =1 << 3, /% Ethernet destination address. */
OFPFW_DL_TYPE = 1 << 4, /* Ethernet frame type. */
OFPFW_NW_PROTO = 1 << 5, /* IP protocol. */

OFPFW_TP_SRC =1 << 6, /* TCP/UDP source port. */
OFPFW_TP_DST =1 << 7, /* TCP/UDP destination port. */

/* IP source address wildcard bit count. O is exact match, 1 ignores the
* LSB, 2 ignores the 2 least-significant bits, ..., 32 and higher wildcard
* the entire field. This is the *opposite* of the usual convention where
* e.g. /24 indicates that 8 bits (not 24 bits) are wildcarded. */
OFPFW_NW_SRC_SHIFT = 8,
OFPFW_NW_SRC_BITS = 6,
OFPFW_NW_SRC_MASK = ((1 << OFPFW_NW_SRC_BITS) - 1) << OFPFW_NW_SRC_SHIFT,
OFPFW_NW_SRC_ALL = 32 << OFPFW_NW_SRC_SHIFT,

/* IP destination address wildcard bit count. Same format as source. */
OFPFW_NW_DST_SHIFT = 14,

OFPFW_NW_DST_BITS = 6,
OFPFW_NW_DST_MASK ((1 << OFPFW_NW_DST_BITS) - 1) << OFPFW_NW_DST_SHIFT,
OFPFW_NW_DST_ALL = 32 << OFPFW_NW_DST_SHIFT,

OFPFW_DL_VLAN_PCP = 1 << 20, /* VLAN priority. */
OFPFW_NW_TOS = 1 << 21, /* IP ToS (DSCP field, 6 bits). */



ofp matchEl‘JwiIdcard

% IP VL H P H LH JH VLA
MR E‘Jiﬂ%witH@MAuﬁﬁ
%N wo o HoW W MO AN
% i i = % A C ¥f
At SIS B M cC 2

%

BRIRIPAT H BIIPLAAN, DA N0ZFR 3T B UL EC I 75 BEARS A ULED , FEID A N 1R R 2
NI

TP H P B R HERD 38 75 32bitPHILLE 7] A 20 DU AR 1 K )5

TR VEIPIIFERS N8 (wildcard[118-13bit 4001000) , FRVEIPTFEL [ 24bit 55 EEAE T
ULHC, JRIPF B AIE8bitn] LLZHE



Openflow 1.0} Z & BL AL 5 v P ik 7 vk

Openflow1.0F& fit P b 25 B0 1 A 2 5 7% .
o % (Forward)
o Bk (Modify field)

SET_VLAN_VID 1B EQVLANFRZS
SET_VLAN_PCP fE I VLANAR Jc 2
STRIP_VLAN 3 HH VLANARZS
SET_DL_SRC 1Z I MACHE 1k
SET_DL_DST &4 H BIMACH 4
SET_NW_SRC &2y 1Pt
SET_NW_DST {24 H fIPHihE
SET_NW_TOS & iIP i 55 S5 2 = By
SET_TP_SRC &t 15
SET_TP_DST &% H i) 115

VVVYVVYVYVYYVYY

UL _ERF— PR N — N BIE (Action) , MR IETE B VL2 — 15
EFIZR (Action List) , ZITEFIZRH UL EZMEELHE G R



Actionk, fLfETypefllen

struct ofp_action_header {
uinti16_t type; /* One of OFPAT_x*. */
uinti6_t len; /* Length of action, including this
header. This is the length of actionm,
including any padding to make it
64-bit aligned. */
uint8_t pad[4];
-

Type N— FRA 2 —

enum ofp_action_type {

OFPAT_OUTPUT, /* Output to switch port. =/
OFPAT_SET_VLAN_VID, /* Set the 802.1q VLAN id. */
OFPAT_SET_VLAN_PCP, /* Set the 802.1q priority. */
OFPAT_STRIP_VLAN, /* Strip the 802.1q header. */
OFPAT_SET_DL_SRC, /* Ethernet source address. */
OFPAT_SET_DL_DST, /* Ethernet destination address. */
OFPAT_SET_NW_SRC, /* IP source address. */
OFPAT_SET_NW_DST, /* IP destination address. */
OFPAT_SET_NW_TOS, /* IP ToS (DSCP field, 6 bits). */
OFPAT_SET_TP_SRC, /* TCP/UDP source port. */
OFPAT_SET_TP_DST, /* TCP/UDP destination port. */
OFPAT_ENQUEUE, /* Output to queue. */

OFPAT_VENDOR = Oxffff
};

H.rPOFPAT_OUTPUTAIOFPAT _ENQUEUE N#: K EalE, HARZRA A& oA L EAE



Action——OUTPUTZE Y

struct ofp_action_output {

uintl6_t type; /* OFPAT_OUTPUT. =/

uinti6_t len; /* Length is 8. =*/

uinti6_t port; /* Output port. =/

uintl6_t max_len; /* Max length to send to controller. */

};

OutputZE R Action ) Z5 H AL 5 — > port ZE M — > max_lenZ %]

PortZ 445 & 1 A3 B 0% Hum 1, Hi i 1 AT DL A2 L — N S2BR)
g H, W] P —F Rl

ALL: B2 B MR AN i 11 DA AR oAt i f o 11 A HY

CONTROLLER: Kl Kk ix4s x4

LOCAL: F5 8048 0 A 35 25 A8 A LA . it 1]

TABLE: REEda 0 iz IR UL AC 2% H b2

IN_PORT: REE#E & M N i & H

NORMAL: %} 1@ — 22 B LA AR A B 4 B

FLOOD: KZi#h t M s /N b A B v 1 5 . CANVE 46 N 1)

YVVVVVYY

2 port JCONTROLLERHE}, max_lenfg € | &K% CONTROLLERH) £ #E 0 8 K K
. Hport N HAMZERS, max_lenBE X



Action——ENQUEUEZE Y

struct ofp_action_enqueue {

g

uinti6_t type;
uinti6_t len;
uinti6_t port;

uint8_t padl[6];
uint32_t queue_id;

Actions—— 1 A VLANID

struct ofp_action_vlan_vid {

-

uinti6_t type;
uinti6_t len;
uinti6_t vlan_vid;
uint8_t pad[2];

Action——1Z ELVLANAL 55 2%

struct ofp_action_vlan_pcp {

uinti6_t type;
uinti6_t len;
uint8_t vlan_pcp;
uint8_t pad[3];

VES
VS
/%

/*

OFPAT_ENQUEUE. =/

Len is 16. */

Port that queue belongs. Should

refer to a valid physical port

(i.e. < OFPP_MAX) or OFPP_IN_PORT. */
Pad for 64-bit alignment. */

Where to enqueue the packets. */

/* OFPAT_SET_VLAN_VID. =/
/* Length is 8. */
/* VLAN id. =/

/* OFPAT_SET_VLAN_PCP. %/
/* Length is 8. */
/* VLAN priority. */



Action——1Z X MACHEL HE

struct ofp_action_dl_addr {
uintl6_t type;
uinti6_t len;
uint8_t dl_addr [OFP_ETH_ALEN];
uint8_t pad[6];

¥;

Action——1Z X IPHE

struct ofp_action_nw_addr {
uint16_t type;
uinti6_t len;
uint32_t nw_addr;

};

Action—— &2 IPR 552 A
struct ofp_action_nw_tos {
uinti6_t type;
uinti6_t len;
uint8_t nw_tos;
uint8_t pad[3];
5~

Action—— {2 itk i J= i 1 5
struct ofp_action_tp_port {1
uinti6_t type;
uint16_t len;
uinti6_t tp_port;
uint8_t pad[2];

/*
/*
/%

/*
/*
/*

/*
/*
/*

/*
/*
/*

OFPAT_SET_DL_SRC/DST. */
Length is 16. */

Ethernet address. */

OFPAT_SET_TW_SRC/DST. x/
Length is 8. */
IP address. */

OFPAT_SET_TW_SRC/DST. =/
Length is 8. */
IP ToS (DSCP field, 6 bits). */

OFPAT_SET_TP_SRC/DST. */
Length is 8. */
TCP/UDP port. */



OpenflowAZ AL

matchl actionsl

N

match?2 actions2

Rk sk HiddhCounter 2 B, FIRIRAF 526 H R GRTHE B

Header Fields | Counters | Actions

PEf S AT SRR ?



OpenflowiH &

Openflow{H & = 373 = KK

1. Controller-to-Switch

A 2 AR HLTE B ZvE B s 2y £ A

> Features FSKRIRHUAZ H LA 14

> Configuration F >R & OpenflowZ #41

> Modify-State FHRASHEAZ BH LIRS (1B 2R 3R)

> Read-Stats AR EEHUAZ B LIRS

> Send-Packet HIk & IEE AR

> Barrier [HZEVH &

2. Asynchronous

FHTE B IHE B AL S A

> Packet-in H R &5 Fniz il 28 22 B L2 IS 21 20 4 B
> Flow-Removed A K5 &n4a il #5 52 He AT LI 22 4 A B
> Port-Status FH K55 045 il &5 22 A dm DR AS 56 8
> Error FSR& FNiE 28 S H bl oA A B R

3. Symmetric

XTRRVE B, AT L 42 i) 2% B A #e L 32 3))

> Hello F K% 7.0penflowiE %

> Echo SR BN 51088 2 R FERIRS
» Vendor ] T HE XJHE



Openflow7H S #% 2
Openflow X i HE £ FH Openflow Headerf10penflow Message i 1473 2H Ji%

Openflow Header {45 4 ;

struct ofp_header {
uint8_t version; /* OFP_VERSION. =/

uint8_t type; /* One of the OFPT_ constants. */
uinti6_t length; /* Length including this ofp_header. =/
uint32_t xid; /* Transaction id associated with this packet.

Replies use the same id as was in the request
to facilitate pairing. */

Openflow Message%iif4) 5 HARH B R AE K



OpenflowiH B 257

enum ofp_type {
/* Immutable messages. */

OFPT_HELLO, /* Symmetric message */
OFPT_ERROR, /* Symmetric message */
OFPT_ECHO_REQUEST, /* Symmetric message */
OFPT_ECHO_REPLY, /* Symmetric message */
OFPT_VENDOR, /* Symmetric message */

/* Switch configuration messages. */

OFPT_FEATURES_REQUEST, /* Controller/switch message */
OFPT_FEATURES_REPLY, /* Controller/switch message */
OFPT_GET_CONFIG_REQUEST, /= Controller/switch message */
OFPT_GET_CONFIG_REPLY, /* Controller/switch message */

OFPT_SET_CONFIG, /* Controller/switch message */
/* Asynchronous messages. */

OFPT_PACKET_IN, /* Async message */
OFPT_FLOW_REMOVED, /* Async message */
OFPT_PORT_STATUS, /* Async message */

/* Controller command messages. */

OFPT_PACKET_OUT, /* Controller/switch message */
OFPT_FLOW_MOD, /* Controller/switch message */
OFPT_PORT_MOD, /* Controller/switch message */
/* Statistics messages. */

OFPT_STATS_REQUEST, /* Controller/switch message */
OFPT_STATS_REPLY, /* Controller/switch message */
/* Barrier messages. */

OFPT_BARRIER_REQUEST, /* Controller/switch message */
OFPT_BARRIER_REPLY, /* Controller/switch message */

/* Queue Configuration messages. */
OFPT_QUEUE_GET_CONFIG_REQUEST, /* Controller/switch message */
OFPT_QUEUE_GET_CONFIG_REPLY /* Controller/switch message */



Janiy

V7. OpenflowiZE 4=

i s 5 A He L BAH 1% HelloVH B

HelloyH 2.+ H L& Openflow Header

Openflow Header ! [Fjversion B N K% 7 T > R B 5
h A Openflow /i

X7 e HU HellovH J2 H S AR IAS 1R P s/ i A5 P
WNRA — AL Fropenflow b A, N &% 1ZErroriH B
Jo W B

R X7 Openflowhi A A LASEZE, MOpenflow %2 7 57
2 .

Openflow &2 J5, &y m ORG24

’ Pl

" Server: TCP6653%% [
:A

OFP_Hello




i

REAZ BRHLRFE (Features) 158
OpenflowiEHE AT Ji, {2 9405 A7 343 5 B eus

HOBLIIRRPE 5 B, A2 e BT 15 B A (L Server: TCPG6S3TT
HHLHIID(DPID), x%ﬁém?ﬁ/ﬁlﬂiéﬁi, AEHHL i
vy 11 N v 1 1 S 5

P 38 [ A2 el K i Features Requestif H#&r 2~ Features ée Eiastures
W HANLERE, Features Requestil & Hfl 7 Reply ; G

Openflow Header-

T HNLAEUL Bl Features Requestid & 5 1R 7] |
Features Reply/H 5., Features ReplyyH & 5 "/ Client
Openflow Header fllFeatures Reply Message ~—



Features Reply MessageZ 14

/* Switch features. */
struct ofp_switch_features {
struct ofp_header header;

uint64_t datapath_id; /* Datapath unique ID. The lower 48-bits are for
a MAC address, while the upper 16-bits are

implementer-defined. */

uint32_t n_buffers; /* Max packets buffered at once. */
uint8_t n_tables; /* Number of tables supported by datapath. */
uint8_t pad[3]; /* Align to 64-bits. */

/* Features. */

uint32_t capabilities; /* Bitmap of support "ofp_capabilities". */
uint32_t actions; /* Bitmap of supported "ofp_action_type"s. */

/* Port info.*/
struct ofp_phy_port ports[0]; /* Port definitioms.

The number of ports

is inferred from the length field in

} the header. */
datapath_id NAZ #H L —JC Z #IID %
n_buffers A2 A1 AT DA [FJ I 28 47 B e K80 A8
n_tables N ML IR =
CapabilitiesF 7~ S AL S IR DI
ActionsE /R AZ ML S IEME  ( Wofp_action_type)
ofp_phy_ports A2 /L I 38 iy 1 ik 4713

enum ofp_capabilities {
OFPC_FLOW_STATS
OFPC_TABLE_STATS
OFPC_PORT_STATS
OFPC_STP
OFPC_RESERVED
OFPC_IP_REASM
OFPC_QUEUE_STATS
OFPC_ARP_MATCH_IP

[l S S S S WO

/*
/*
/*
/*
/*
/*
/=
/*

Flow statistics. =/

Table statistics. =/

Port statistics. =/

802.1d spanning tree. */

Reserved, must be zero. =/

Can reassemble IP fragments. =/
Queue statistics. =/

Match IP addresses in ARP pkts. */



)P v g Ik

struct ofp_phy_port {
uintl6_t port_no;
uint8_t hw_addr [OFP_ETH_ALEN];

char name [OFP_MAX_PORT_NAME_LEN]; /* Null-terminated */

uint32_t config;
uint32_t state;

/* Bitmaps of OFPPF_* that describe features.

* unsupported or unavailable. */

/* Bitmap of OFPPC_* flags. */
/* Bitmap of OFPPS_* flags. */

All bits zeroed if

uint32_t curr; /* Current features. */

uint32_t advertised; /* Features being advertised by the port. */

uint32_t supported; /* Features supported by the port. =/

uint32_t peer; /* Features advertised by peer. */

}; enum ofp_port_config {
» ply = OFPPC_PORT_DOWN =1 << 0, /+ Port is administratively down. =/
port_no N EH ¥ 1 1 4 =
N OFPPC_NO_STP =1 << 1, /= Disable 802.1D spanning tree on port. =/

hW addrj'\jllfﬁ I:I E/\] MAC:[:“’I_j‘:[:lI:: OFPPC_NO_RECV =1 << 2, /+ Drop all packets except 802.1D spanning

name N I ) 44 FR
config Jy i I B HC B

State Ay ¥ FRZS

curr, advertised supported,peer

N VP e

};

OFPPC_NO_RECV_STP
OFPPC_NO_FLOOD
OFPPC_NO_FWD
OFPPC_NO_PACKET_IN

enum ofp_port_state {

OFPPS_LINK_DOWN

[ S

<<
<<
<<

3, /=
4, /=
5, /=
6 /=

tree packets. */

Drop received 802.1D STP packets. =/

Do not include this port when flooding. */
Drop packets forwarded to port. =/

Do not send packet-in msgs for port. =/

1 << 0, /* No physical link present. */

/+ The OFPPS_STP_* bits have no effect on switch operation. The
+ controller must adjust OFPPC_NO_RECV, OFPPC_NO_FWD, and

= OFPPC_NO_PACKET_IN

*= tree. */
OFPPS_STP_LISTEN
OFPPS_STP_LEARN
OFPPS_STP_FORWARD
OFPPS_STP_BLOCK
OFPPS_STP_MASK

WWwN=O

appropriately to fully implement an 802.1D spanning

<<
<<
<<
<<
<<

8, /+ Not learning or relaying frames. */
8, /+ Learning but not relaying frames. =/
8, /+» Learning and relaying frames. =/

8, /= Not part of spanning tree. =/

8 /= Bit mask for OFPPS_STP_= values. #/



Aic B AZ # A Openflow )& 14

struct ofp_switch_config {
struct ofp_header header;
uinti6_t flags; /+ OFPC_» flags. #=/
uinti6_t miss_send_len; /* Max bytes of new flow that datapath should
send to the controller. =/

};

enum ofp_config flags {
/+ Handling of IP fragments. =/
OFPC_FRAG_NORMAL 0, /= No special handling for fragments. =/
OFPC_FRAG_DROP /+ Drop fragments. =/

1
OFPC_FRAG_REASM 2, /* Reassemble (only if OFPC_IP_REASM set). =/
OFPC_FRAG_MASK 3

};

Openflow 2 L R A AN @ M 7 B | 2 ic B

B EM Hflags, HRIRR ML AT AL EIP 4 A B dE

F AN EME Amiss_send_len, RIS M — N HNLICIE AL B s . 2)0A
F, K A 1 28 1 1 SR B T B



Packet-ing-{ (A2 #ML IR )

Packet-inyH S il & 175 .1

ﬁ%i‘ﬁ%mqﬁﬁﬁ/ﬁiﬁﬁ@}ﬁ, SEEAmE, WH BRI AL ULEC )
7R o

WmRMERPEILE S H, WAL 1% B Brfa 7 Waction §1) 3R A EE 2L
P EL

mRmERABEAVLECK B, WAL 2 2 3 2R A Packet-inyH & H
RIZEE TS . PEI 28 8 S AP AR AT B S5 AR A P

’/ bl
Packet-inyH S il & 175 1.2 - /<
ALK B FE 7~ Haction ] @J/ o
RS R R A ES s E o
(Output=CONTROLLER) . g =<
ihﬁi&ﬁ@K%%ﬁ?é%ﬁEﬁ?ﬁ% . '\
}_[‘ © \/\/—
= /. '\ T
%ﬁ ﬁ:ﬁ



Packet-inyH B A& =,

struct ofp_packet_in {

}

struct ofp_header header;
uint32_t buffer_id; /*
uinti6é_t total_len; /*

uinti6_t in_port; /*
uint8_t reason; /*
uint8_t pad;

uint8_t datal[0]; /*

ID assigned by datapath. =/

Full length of frame. =/

Port on which frame was received. =/

Reason packet is being sent (one of OFPR_*) +=/

Ethernet frame, halfway through 32-bit word,
so the IP header is 32-bit aligned. The
amount of data is inferred from the length
field in the header. Because of padding,
offsetof(struct ofp_packet_in, data) ==
sizeof(struct ofp_packet_in) - 2. #/

buffer_id N packet-in 44 Frdfs iy iU E 4 AR S He b L 2247 X 1D
total_len ~ydata Bt K &F

in_portZi i B NS BRI N B L 5

Reason ypacket-inZFA: 7= A= 1) JR [A]

enum ofp_packet_in_reason {

OFPR_NO_MATCH,
OFPR_ACTION

};

/+* No matching flow. #=/

/* Action explicitly output to controller.



il el B iR (Flow-ModyH E)

Flow-ModyH S R In. MiIBx. & OpenflowsZ #dl HIii & A5 5.
Flow-Mod il 2 A FfpzE .

ADD. DELETE. DELETE-STRICT. MODIFY. MODIFY-STRICT
ADDZE i) flow-modH S5 FH RS N — 2% 8 i 28 Tl

DELETEZR 2 Y] flow-modiH |2 FH SR M BR B & 776 — & 25 A i R T
DELETE-STRICTZR 2 f¥) flow-modiH J2. F SR M B B — 25 38 e L 3R
MODIFYZE ! I flow-modiH B H SRAZ U A 756 — 2 R i
MODIFY-STRICTZE % I flow-mod il J& FH A& B 3 — 2548 & B R T

’ bl

-




Flow-Mod7H E A& =

struct ofp_flow_mod {
struct ofp_header header;
struct ofp_match match; /* Fields to match */
uinté4_t cookie; /> Opaque controller-issued identifier. =/

/* Flow actions. =/

uinti6_t command; /* One of OFPFC_x. =/
uinti6_t idle_timeout; /* Idle time before discarding (seconds). */
uinti6_t hard_timeout; /* Max time before discarding (seconds). */
uinti6_t priority; /* Priority level of flow entry. */
uint32_t buffer_id; /* Buffered packet to apply to (or -1).

Not meaningful for OFPFC_DELETE=x. =/
uinti6_t out_port; /* For OFPFC_DELETE* commands, require

matching entries to include this as an
output port. A value of OFPP_NONE
indicates no restriction. */
uinti6_t flags; /* One of OFPFF_*. =/
struct ofp_action_header actions[0]; /* The action length is inferred
from the length field in the
header. */

3

Match A7t & i matchik

Cookie A&l 28 & MR T AR R AT

Command 2 flow-modf125#Y, 7 LLJEADD. DELETE. DELETE-STRICT. MODIFY. MODIFY-STRICT
Idle_timeout AR I 1) 25 A i B (1]

Hard_timeout it 38 Wi 1) e KA 77 ik (]

Priority NV R UL Ao, A2 HAT LA S UL BE i A0 o 2% 1At 2R I

Buffer_id XML H L2 IXID, flow-modiH 21T AT & — N2 IXID, %42 X H e B 2 4 it it
flow-mod il 2 Flaction 1| 3= 4

out_port AR Iflow_mod il S AL 40 1 VLB 2 5

Flags Nflow-mod i & [ — kR E A7, 7T LA KT 7 im R M b J5 A& 75 K i flow-removed i 5., ¥ MR I}
AR ERRELEI, NINMRMERIE S NN 2RI,

Actions NAction#| 3



H Flow-Mod7H & .1 v Packet-inyH E.

A RS B — AN B I B AL E 51z S VLA I imaR TRy, A8k
MRS e B3 25 B Packet-inyH B P ik gn 5 a8, I HAZ ML 2812504 £
AT .

55 1 235 Bl Packet-inH B )5, AI L&A iEflow-modiB AR WL E —/ MR, Jf
HA##flow-mod i 5. (¥ buffer_id- Bt ¥ B Apacket-inii§ B H ibuffer_idfl. M
BRI AL AN T — 4 58 RrmED, I e izfdE iz ikt
L2 T Haciton ¥l R AL

5 A
o /\‘

W
£



T HRALEE BB, (Packet-Out)

FEA T A PR SR 75 B A AL P S I — 2 IR DR LA AL HE, 28 il
ﬁfb%ﬁlﬂ%ﬁﬁ)ﬁﬁ, EHIAEHEIRD (WARP. IGMPE) , DLE TINE VL EE
IR TR B X — BB A B vk .

PR, i m] L F PacketOutid B, F VRS ML — /B4 B ey Ab 2

. bl

YN
@J/ /%
°/ /N_

-y
S /’\‘_

%
£




Packet-OutyH B 8% =

struct ofp_packet_out {
struct ofp_header header;

uint32_t buffer_id; /* ID assigned by datapath (-1 if none). */
uinti6_t in_port; /* Packet’s input port (OFPP_NONE if none). =/
uinti6_t actions_len; /* Size of action array in bytes. =/
struct ofp_action_header actions[0]; /* Actions. */
/* uint8_t datal[0]; =/ /* Packet data. The length is inferred

from the length field in the header.

(Only meaningful if buffer_id == -1.) */

Buffer_id A ML ZEH X IDS, Mbuffer_id N-18, F5ERIZMH XN
packet-outyH 2. [ data Bt

In_portNPacket-OutyH S Fe A/ ILECAE S, HPacket-OutiJbuffer_id N

-1, I Haction#|F 4852 T Output=TABLE[WZI1E, in_port{E Ndatak
BRI EANLECE B TR R AW

Actions_lent5 7€ 1 actionFIZR K E, HRIX fractionsflidatal
Data N— M X, AT LAAEfig— A~ LA A il



Packet-OutyH E 1IN FH 37 =

1. fRERE— IR A B 7
2. TN A — AN L R % MR action 1 R AL B

BRI . BERR RIN

P 28 7] — DA AL K 1% Packet-OutiH &

buffer_id=-1, dataBt AFMFRFAREIEE, actions AM

AT HRAL I FEA v 1 5

a0 X AN R L s O S im R E R —

Openflow AL, X ¥ R AZ B 25 7= 42 — > Packet-In

H BB IXA R B IR B LS sl gs, M El]

PRI B — S B R A7 AE P =HE




#:T-OpenflowJSDN T/E i IE

O FNLTa] WX 2% J 1% B £,
QOFZ#tlimzR L ULEC I, Wi
PacketInZF - B 0L #ie 25 445 1) 2%
@ #s N K InaR (8iPacketOut)

s OHIRR K

B BRI

1 N/ ®I[[G

cSR, OBIRRRER




Openflow1.3/%4

Openflow1.3 5 0penflowl.0/ 3= E AN [H] «

o WINZRIME

o HEhNTHIK

o W 1 Meter

o BT HIEEHEVLE KR VL (match 575
o I Y AR B AL EE R Bh RS



2 RIAR:

(a) Packets are matched against multiple tabls in the pipeline

Match fields:

ingressport+ _ o <

metadata +
pid hars

Action set

LRI

ee e ®Man:hﬁelds:
“|* ~ . Ingress port +
}:able P ]
Action set

26,

@ Find highest-priority matching flow entry

@ Apply instructions:

i. Modify packet & update match fields

(apply actions instruction)

ii. Update action set (clear actions and/or

write actions instructions)

iii. Update metadata

® Send match data and action set to

next table

(b) Per-table packet processing

Match Fields

Priority

Counters

Instructions

Timeouts

Cookie

Flags

Table 1: Main components of a flow entry in a flow table.

Openflow1.04 FJActionsZ2 Ji | Instructrions




H3K

Group Identifier | Group Type | Counters | Action Buckets

Table 2: Main components of a group entry in the group table.

Group Identifier: —“/M32bitFRiIAAT

Group Type: ZH3#E 5 HIEM

Counters: 20325 B 1 F 114k

Action Buckets: —MActionZI|ZRFIHFER (— FRFActionF|RIFIES)

Group Type:

1. all: #Taction bucketsH WA BIE, B LA T 4%

2. select: FEMLIATaction bucketst ) —Ash{E, AILLHT 24

3. indirect: RALE—"NActiond|RHIHE, WEH S, FJUHTHHES

4. fast failover. AT action buckets 58— 4B 745 H, B LLAH T HRE BRI E



Meter:

Meter H K & L Openflow s #tL% 2 da £ 5% I 1) 14 B 248

Meter Identifier | Meter Bands | Counters

Table 3: Main components of a meter entry in the meter table.

Band Type | Rate | Counters | Type specific arguments

Table 4: Main components of a meter band in a meter entry.

e Optional: drop: drop (discard) the packet. Can be used to define a rate limiter band.

e Optional: dscp remark: increase the drop precedence of the DSCP field in the IP header of the
packet. Can be used to define a simple DiffServ policer.



Openflow1.32 £ UL HC /7 V4%

struct ofp_match {
uinti6_t type; /* One of OFPMT_* =/
uint16_t length; /* Length of ofp_match (excluding padding) */
/* Followed by:

* - Exactly (length - 4) (possibly 0) bytes containing OXM TLVs, then
* - Exactly ((length + 7)/8%8 - length) (between 0 and 7) bytes of
* all-zero bytes
* In summary, ofp_match is padded as needed, to make its overall size
* a multiple of 8, to preserve alignement in structures using it.
*/
uint8_t oxm_fields[0]; /* 0 or more OXM match fields */
uint8_t pad[4]; /* Zero bytes - see above for sizing */

};
Match %514 HH Openflow1.0[) & K 45 742 A 0penflowl.3 128K 4514

Type & LL R Fl, OFPMT_STANDARDAIOFPMT_OXM. H:H1OFPMT _STANDARD
WIEF T

enum ofp_match_type {

OFPMT_STANDARD = 0, /* Deprecated. */

OFPMT _OXM =1, /* OpenFlow Extensible Match */
};



OXM_FIELDS

OXM=0penflow eXtensible Match

31 16 15 9 7 0

HM| =

oxm_class oxm_field oxm_length

Figure 4: OXM TLV header layout.

Name Width Usage
oxm_type oxm_class 16 Match class: member -cla.ss or reserved class
¢ oxm_field 7 Match field within the class
oxm_hasmask 1 Set if OXM include a bitmask in payload
oxm_length 8 Length of OXM payload

Table 9: OXM TLV header fields.

enum ofp_oxm_class {
OFPXMC_NXM_O
OFPXMC_NXM_1
OFPXMC_OPENFLOW_BASIC
OFPXMC_EXPERIMENTER

0x0000, /* Backward compatibility with NXM =/
0x0001, /* Backward compatibility with NXM =/
0x8000, /* Basic class for OpenFlow */
OxFFFF, /* Experimenter class */

Je
HMZE7ROXM TLV & 755 4 FiE g I



openflow_basic_classiE X HJOXM_fields

enun oxm_ofb_match_fields {

OFPXNT_OFB_IN_PORT = 0, /e Switch input port. e/
OFPXMT_OFB_IN_PHY PORT = 1, /e Switch physical input port. ¢/
OFPXNT_OFB_METADATA = 2, [+ Metadata passed between tables. ¢/
OFPXNT_OFB_ETH_DST = 3, /e Ethernet destination address. e/
OFPXNT_OFB_ETH_SRC = 4, [ Ethernet source address. e/
OFPXNT_OFB_ETH_TYPE = §, /e Ethernet frame type. ¢/
OFPXNT_OFB_VLAN_VID -6, /e VLAN 1d. «/

OFPXMT_OFB_VLAN_PCP - 7, /o VLAN priority. =/
OFPXNT_OFB_IP_DSCP = 8, /¢ IP DSCP (6 bits in ToS field). ¢/
OFPXMT_OFB_IP_ECN -9, /e IP ECN (2 bits in ToS field). e/
OFPXMT_OFB_IP_PROTO - 10, /+ IP protocol. /
OFPXNT_OFB_IPV4_SRC = 11, /¢ IPv4 source address. «/
OFPXNT_OFB_IPV4_DST = 12, /¢ IPv4 destination address. ¢/
OFPXNMT_OFB_TCP_SRC = 13, /¢ TCP source port. e/
OFPXMT_OFB_TCP_DST = 14, /¢ TCP destination port. s/
OFPXNT_OFB_UDP_SRC - 15, /+ UDP source port. =/
OFPXNT_OFB_UDP_DST = 16, /¢ UDP destination port. e/
OFPXNT_OFB_SCTP_SRC = 17, /+ SCIP source port. /
OFPXMT_OFB_SCTP_DST = 18, /e SCTP destination port. o/

OFPXMT_OFB_ICMPV4_TYPE = 19, /¢ ICNP type. ¢/
OFPXNT_OFB_ICMPV4_CODE = 20, /+ ICHNP code. «/

OFPXNT_OFB_ARP_OP = 21, /* ARP opcode. =/
OFPXNT_OFB_ARP_SPA = 22, /+ ARP source IPv4 address. e/
OFPXNT_OFB_ARP_TPA = 23, /* ARP target IPv4 address. e/
OFPXNMT_OFB_ARP_SHA = 24, /* ARP source hardwvare address. /
OFPXNT_OFB_ARP_THA = 25, /¢ ARP target hardvare address. =/
OFPXNT_OFB_IPV6_SRC - 26, /¢ IPv6 source address. +/
OFPXNMT_OFB_IPV6_DST - 27, /¢ IPv6 destination address. ¢/

OFPXNT_OFB_IPV6_FLABEL - 28, /¢ IPv6 Flow Label ¢/
OFPXMT_OFB_ICMPV6_TYPE = 29, /e ICMPv6 type. */
OFPXNT_OFB_ICMPV6_CODE = 30, /+ ICMPvE code. ¢/
OFPXNT_OFB_IPV6_ND_TARGET = 31, /e Target address for ND. /
OFPXNT_OFB_IPV6_ND_SLL = 32, /¢ Source link-layer for ND. /
OFPXNT_OFB_IPV6_ND_TLL = 33, /¢ Target link-layer for ND. s/
OFPXNMT_OFB_MPLS_LABEL = 34, /¢ MPLS label. =/

OFPXMT_OFB_MPLS_TC = 35, /¢ NPLS TC. ¢/
OFPXNT_OFP_MPLS_BOS - 36, /+ MPLS BoS bit. ¢/
OFPXNT_OFB_PBB_ISID = 37, /+ PBB I-SID. ¢/
OFPXMT_OFB_TUNNEL_ID = 38, /e Logical Port Metadata. ¢/

OFPXNT_OFB_IPV6_EXTHDR - 39, /¢ IPv6 Extension Header pseudo-field </



Openflow1.3 & X )1 £% UL FC it

Field Description
OXM_OF_IN_PORT | Reguired | Ingress port. This may be a physical or switch-defined logical port.
OXM_OF_ETH_DST | Reguired | Ethernet destination address. Can use arbitrary bitmask
OXM_OF_ETH_SRC | Reguired | Ethernet source address. Can use arbitrary bitmask
OXM_OF_ETH_TYPE | Reguired | Ethernet type of the OpenFlow packet payload, after VLAN tags.
OXM_OF_IP_PROTO | Reguired | IPv4 or IPv6 protocol number
OXM_OF_IPV4_SRC | Reguired | IPv4 source address. Can use subnet mask or arbitrary bitmask
OXM_OF_IPV4_DST | Reguired | IPv4 destination address. Can use subnet mask or arbitrary bitmask
OXM_OF_IPV6_SRC | Reguired | IPv6 source address. Can use subnet mask or arbitrary bitmask
OXM_OF_IPV6_DST | Reguired | IPv6 destination address. Can use subnet mask or arbitrary bitmask
OXM_OF_TCP_SRC | Reguired | TCP source port
OXM_OF_TCP_DST | Reguired | TCP destination port
OXM_OF_UDP_SRC | Reguired | UDP source port
OXM_OF_UDP_DST | Reguired | UDP destination port

Table 11: Required match fields.




Instructions:

Meter meter_id: {4 E0 4 EL52 45 415 %€ M meter[R il

Apply-Actions actions: SZEIHAT IR EIE)1E, (HATEERAction Set
Clear-Actions: JiiP&Action SetH i T s 1E

Write-Actions actions: [A]Action Set5 A #1E

Write-Metadata metadata/mask: 5 metadata

Goto-Table next-table-id: Bk# %] N — PR E

Action Set:

1. copy TTL inwards: apply copy TTL inward actions to the packet

2. pop: apply all tag pop actions to the packet

3. push-MPLS: apply MPLS tag push action to the packet

4. push-PBB: apply PBB tag push action to the packet

5. push-VLAN: apply VLAN tag push action to the packet

6. copy TTL outwards: apply copy TTL outwards action to the packet

7. decrement TTL: apply decrement TTL action to the packet

8. set: apply all set-field actions to the packet

9. qos: apply all QoS actions, such as set_queue to the packet

10. group: if a group action is specified, apply the actions of the relevant group bucket(s) in the
order specified by this list

11. output: if no group action is specified, forward the packet on the port specified by the output
action



!



