
初识MySQL
标签： MySQL是怎样运⾏的

MySQL的客户端／服务器架构

以我们平时使⽤的微信为例，它其实是由两部分组成的，⼀部分是客
户端程序，⼀部分是服务器程序。客户端可能有很多种形式，⽐如⼿
机APP，电脑软件或者是⽹⻚版微信，每个客户端都有⼀个唯⼀的⽤
户名，就是你的微信号，另⼀⽅⾯，腾讯公司在他们的机房⾥运⾏着
⼀个服务器软件，我们平时操作微信其实都是⽤客户端来和这个服务
器来打交道。⽐如狗哥⽤微信给猫爷发了⼀条消息的过程其实是这样
的：

1. 消息被客户端包装了⼀下，添加了发送者和接受者信息，然后
从狗哥的微信客户端传送给微信服务器；

2. 微信服务器从消息⾥获取到它的发送者和接收者，根据消息的
接受者信息把这条消息送达到猫爷的微信客户端，猫爷的微信
客户端⾥就显示出狗哥给他发了⼀条消息。

MySQL的使⽤过程跟这个是⼀样的，它的服务器程序直接和我们存储
的数据打交道，然后可以有好多客户端程序连接到这个服务器程序，
发送增删改查的请求，然后服务器就响应这些请求，从⽽操作它维护
的数据。和微信⼀样，MySQL的每个客户端都需要提供⽤户名密码才
能登录，登录之后才能给服务器发请求来操作某些数据。我们⽇常使
⽤MySQL的情景⼀般是这样的：

1. 启动MySQL服务器程序。
2. 启动MySQL客户端程序并连接到服务器程序。
3. 在客户端程序中输⼊⼀些命令语句作为请求发送到服务器程

序，服务器程序收到这些请求后，会根据请求的内容来操作具
体的数据并向客户端返回操作结果。

我们知道计算机很⽜逼，在⼀台计算机上可以同时运⾏多个程序，⽐
如微信、QQ、⾳乐播放器、⽂本编辑器啥的，每⼀个运⾏着的程序
也被称为⼀个进程。我们的MySQL服务器程序和客户端程序本质上都
算是计算机上的⼀个进程，这个代表着MySQL服务器程序的进程也被
称为MySQL数据库实例，简称数据库实例。

每个进程都有⼀个唯⼀的编号，称为进程ID，英⽂名叫PID，这个编
号是在我们启动程序的时候由操作系统随机分配的，操作系统会保证
在某⼀时刻同⼀台机器上的进程号不重复。⽐如你打开了计算机中的
QQ程序，那么操作系统会为它分配⼀个唯⼀的进程号，如果你把这
个程序关掉了，那操作系统就会把这个进程号回收，之后可能会重新
分配给别的进程。当我们下⼀次再启动 QQ程序的时候分配的就可能
是另⼀个编号。每个进程都有⼀个名称，这个名称是编写程序的⼈⾃
⼰定义的，⽐如我们启动的MySQL服务器进程的默认名称
为mysqld， ⽽我们常⽤的MySQL客户端进程的默认名称为mysql。

MySQL的安装

不论我们通过下载源代码⾃⾏编译安装的⽅式还是直接使⽤官⽅提供
的安装包进⾏安装之后，MySQL的服务器程序和客户端程序都会被安
装到我们的机器上。不论使⽤上述两者的哪种安装⽅式，⼀定⼀定⼀
定（重要的话说三遍）要记住你把MySQL安装到哪了，换句话说，⼀
定要记住MySQL的安装⽬录。

⼩贴⼠：

`MySQL`的⼤部分安装包都包含了服务器程序和客户端程序，不过
在Linux下使⽤RPM包时会有单独的服务器RPM包和客户端RPM包，
需要分别安装。

另外，MySQL可以运⾏在各种各样的操作系统上，我们后边会讨论在
类UNIX操作系统和Windows操作系统上使⽤的⼀些差别。为了⽅便
⼤家理解，我在macOS 操作系统（苹果电脑使⽤的操作系统）和
Windows操作系统上都安装了MySQL，它们的安装⽬录分别是：

macOS操作系统上的安装⽬录：

/usr/local/mysql/

Windows操作系统上的安装⽬录：

C:\Program Files\MySQL\MySQL Server 5.7

下边我会以这两个安装⽬录为例来进⼀步扯出更多的概念，不过⼀定
要注意，这两个安装⽬录是我的运⾏不同操作系统的机器上的安装⽬
录，⼀定要记着把下边示例中⽤到安装⽬录的地⽅替换为你⾃⼰机器
上的安装⽬录。

⼩贴⼠：

类UNIX操作系统⾮常多，⽐如FreeBSD、Linux、macOS、
Solaris等都属于UNIX操作系统的范畴，我们这⾥使⽤macOS操作
系统代表类UNIX操作系统来运⾏MySQL。

bin⽬录下的可执⾏⽂件

在MySQL的安装⽬录下有⼀个特别特别重要的bin⽬录，这个⽬录下
存放着许多可执⾏⽂件，以macOS系统为例，这个bin⽬录的绝对路
径就是（在我的机器上）：

/usr/local/mysql/bin

我们列出⼀些在macOS中这个bin⽬录下的⼀部分可执⾏⽂件来看⼀
下（⽂件太多，全列出来会刷屏的）：

.
├── mysql
├── mysql.server -> ../support-files/mysql.server
├── mysqladmin
├── mysqlbinlog
├── mysqlcheck
├── mysqld
├── mysqld_multi
├── mysqld_safe
├── mysqldump
├── mysqlimport
├── mysqlpump
... (省略其他⽂件)
0 directories, 40 files

Windows中的可执⾏⽂件与macOS中的类似，不过都是以.exe为扩
展名的。这些可执⾏⽂件都是与服务器程序和客户端程序相关的，后
边我们会详细唠叨⼀些⽐较重要的可执⾏⽂件，现在先看看执⾏这些
⽂件的⽅式。

对于有可视化界⾯的操作系统来说，我们拿着⿏标点点点就可以执⾏
某个可执⾏⽂件，不过现在我们更关注在命令⾏环境下如何执⾏这些
可执⾏⽂件，命令⾏通俗的说就是那些⿊框框，这⾥的指的是
类UNIX系统中的Shell或者Windows系统中的cmd.exe，如果你现
在还不知道怎么启动这些命令⾏⼯具，⽹上搜搜吧～ 下边我们以
macOS系统为例来看看如何启动这些可执⾏⽂件（Windows中的操
作是类似的，依葫芦画瓢就好了）

使⽤可执⾏⽂件的相对／绝对路径

假设我们现在所处的⼯作⽬录是MySQL的安装⽬录，也就
是/usr/local/mysql，我们想启动bin⽬录下的mysqld这
个可执⾏⽂件，可以使⽤相对路径来启动：

./bin/mysqld

或者直接输⼊mysqld的绝对路径也可以：

/usr/local/mysql/bin/mysqld

将该bin⽬录的路径加⼊到环境变量PATH中

如果我们觉得每次执⾏⼀个⽂件都要输⼊⼀串⻓⻓的路径名贼
麻烦的话，可以把该bin⽬录所在的路径添加到环境变量PATH
中。环境变量PATH是⼀系列路径的集合，各个路径之间使⽤冒
号:隔离开，⽐⽅说我的机器上的环境变量PATH的值就是：

/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin

我的系统中这个环境变量PATH的值表明：当我在输⼊⼀个命令
时，系统便会
在/usr/local/bin、/usr/bin:、/bin:、/usr/sbin、/sbin
这些⽬录下依次寻找是否存在我们输⼊的那个命令，如果寻找
成功，则执⾏该⽬录下对应的可执⾏⽂件。所以我们现在可以
修改⼀下这个环境变量PATH，把MySQL安装⽬录下的bin⽬录
的路径也加⼊到PATH中，在我的机器上修改后的环境变量
PATH的值为：

/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/
usr/local/mysql/bin

这样现在不论我们所处的⼯作⽬录是啥，我们都可以直接输⼊
可执⾏⽂件的名字就可以启动它，⽐如这样：

mysqld

⽅便多了哈～

⼩贴⼠：

关于啥是环境变量以及如何在当前系统中添加或修改系统变量
不是我们唠叨的范围，⼤家找本相关的书或者上⽹查⼀查哈～

启动MySQL服务器程序

UNIX⾥启动服务器程序

在类UNIX系统中⽤来启动MySQL服务器程序的可执⾏⽂件有很多，
⼤多在MySQL安装⽬录的bin⽬录下，我们⼀起来瞅瞅。

mysqld

mysqld这个可执⾏⽂件就代表着MySQL服务器程序，运⾏这个可执
⾏⽂件就可以直接启动⼀个服务器进程。但这个命令不常⽤，我们继
续往下看更⽜逼的启动命令。

mysqld_safe

mysqld_safe是⼀个启动脚本，它会间接的调⽤mysqld，⽽且还
顺便启动了另外⼀个监控进程，这个监控进程在服务器进程挂了的时
候，可以帮助重启它。另外，使⽤mysqld_safe启动服务器程序
时，它会将服务器程序的出错信息和其他诊断信息重定向到某个⽂件
中，产⽣出错⽇志，这样可以⽅便我们找出发⽣错误的原因。

mysql.server

mysql.server也是⼀个启动脚本，它会间接的调
⽤mysqld_safe，在调⽤mysql.server时在后边指定start参数
就可以启动服务器程序了，就像这样：

mysql.server start

需要注意的是，这个 mysql.server ⽂件其实是⼀个链接⽂件，它
的实际⽂件是 ../support-files/mysql.server。我使⽤的macOS
操作系统会帮我们在bin⽬录下⾃动创建⼀个指向实际⽂件的链接⽂
件，如果你的操作系统没有帮你⾃动创建这个链接⽂件，那就⾃⼰创
建⼀个呗～ 别告诉我你不会创建链接⽂件，上⽹搜搜呗～

另外，我们还可以使⽤mysql.server命令来关闭正在运⾏的服务
器程序，只要把start参数换成stop就好了：

mysql.server stop

mysqld_multi

其实我们⼀台计算机上也可以运⾏多个服务器实例，也就是运⾏多
个MySQL服务器进程。mysql_multi可执⾏⽂件可以对每⼀个服务
器进程的启动或停⽌进⾏监控。这个命令的使⽤⽐较复杂，本书主要
是为了讲清楚MySQL服务器和客户端运⾏的过程，不会对启动多个服
务器程序进⾏过多唠叨。

Windows⾥启动服务器程序

Windows⾥没有像类UNIX系统中那么多的启动脚本，但是也提供了
⼿动启动和以服务的形式启动这两种⽅式，下边我们详细看。

mysqld

同样的，在MySQL安装⽬录下的bin⽬录下有⼀个mysqld可执⾏⽂
件，在命令⾏⾥输⼊mysqld，或者直接双击运⾏它就算启动了
MySQL服务器程序了。

以服务的⽅式运⾏服务器程序

⾸先看看啥是个Windows 服务？如果⽆论是谁正在使⽤这台计算
机，我们都需要⻓时间的运⾏某个程序，⽽且需要在计算机启动的时
候便启动它，⼀般我们都会把它注册为⼀个Windows 服务，操作系
统会帮我们管理它。把某个程序注册为Windows服务的⽅式挺简
单，如下：

"完整的可执⾏⽂件路径" --install [-manual] [服务名]

其中的-manual可以省略，加上它的话表示在Windows系统启动的
时候不⾃动启动该服务，否则会⾃动启动。服务名也可以省略，默认
的服务名就是MySQL。⽐如我的Windows计算机上mysqld的完整路
径是：

C:\Program Files\MySQL\MySQL Server
5.7\bin\mysqld

所以如果我们想把它注册为服务的话可以在命令⾏⾥这么写：

"C:\Program Files\MySQL\MySQL Server
5.7\bin\mysqld" --install

在把mysqld注册为Windows服务之后，我们就可以通过下边这个命
令来启动MySQL服务器程序了：

net start MySQL

当然，如果你喜欢图形界⾯的话，你可以通过Windows的服务管理
器通过⽤⿏标点点点的⽅式来启动和停⽌服务（作为⼀个程序猿，还
是⽤⿊框框吧～）。

关闭这个服务也⾮常简单，只要把上边的start换成stop就⾏了，
就像这样：

net stop MySQL

启动MySQL客户端程序

在我们成功启动MySQL服务器程序后，就可以接着启动客户端程序来
连接到这个服务器喽，bin⽬录下有许多客户端程序，⽐⽅说
mysqladmin、mysqldump、mysqlcheck等等等等（好多呢，就
不⼀⼀列举了）。这⾥我们重点要关注的是可执⾏⽂件mysql，通过
这个可执⾏⽂件可以让我们和服务器程序进程交互，也就是发送请
求，接受服务器的处理结果。启动这个可执⾏⽂件时⼀般需要⼀些参
数，格式如下：

mysql -h主机名 -u⽤户名 -p密码

各个参数的意义如下：

参
数
名
含义

-
h

表示服务器进程所在计算机的域名或者IP地址，如果服务器进程
就运⾏在本机的话，可以省略这个参数，或者填localhost或
者127.0.0.1。也可以写作 --host=主机名的形式。

-
u 表示⽤户名。也可以写作 --user=⽤户名的形式。

-
p 表示密码。也可以写作 --password=密码的形式。

⼩贴⼠：

像 h、u、p 这样名称只有⼀个英⽂字⺟的参数称为短形式的参
数，使⽤时前边需要加单短划线，像 host、user、password 这
样⼤于⼀个英⽂字⺟的参数称为⻓形式的参数，使⽤时前边需要加
双短划线。后边会详细讨论这些参数的使⽤⽅式的，稍安勿躁～

⽐如我这样执⾏下边这个可执⾏⽂件(⽤户名密码按你的实际情况填
写)，就可以启动MySQL客户端，并且连接到服务器了。

mysql -hlocalhost -uroot -p123456

我们看⼀下连接成功后的界⾯：

Welcome to the MySQL monitor. Commands end with
; or \g.
Your MySQL connection id is 2
Server version: 5.7.21 Homebrew

Copyright (c) 2000, 2018, Oracle and/or its
affiliates. All rights reserved.

Oracle is a registered trademark of Oracle
Corporation and/or its
affiliates. Other names may be trademarks of
their respective
owners.
Type 'help;' or '\h' for help. Type '\c' to clear
the current input statement.

mysql>

最后⼀⾏的mysql>是⼀个客户端的提示符，之后客户端发送给服务
器的命令都需要写在这个提示符后边。

如果我们想断开客户端与服务器的连接并且关闭客户端的话，可以
在mysql>提示符后输⼊下边任意⼀个命令：

1. quit
2. exit
3. \q

⽐如我们输⼊quit试试：

mysql> quit
Bye

输出了Bye说明客户端程序已经关掉了。注意注意注意，这是关闭客
户端程序的⽅式，不是关闭服务器程序的⽅式，怎么关闭服务器程序
上⼀节⾥唠叨过了。

如果你愿意，你可以多打开⼏个⿊框框，每个⿊框框都使⽤mysql
-hlocahhost -uroot -p123456来运⾏多个客户端程序，每个
客户端程序都是互不影响的。如果你有多个电脑，也可以试试把它们
⽤局域⽹连起来，在⼀个电脑上启动MySQL服务器程序，在另⼀个电
脑上执⾏mysql命令时使⽤IP地址作为主机名来连接到服务器。

连接注意事项

最好不要在⼀⾏命令中输⼊密码。

我们直接在⿊框框⾥输⼊密码很可能被别⼈看到，这和你当着
别⼈的⾯输⼊银⾏卡密码没啥区别，所以我们在执⾏mysql连
接服务器的时候可以不显式的写出密码，就像这样：

mysql -hlocahhost -uroot -p

点击回⻋之后才会提示你输⼊密码：

Enter password:

不过这回你输⼊的密码不会被显示出来，⼼怀不轨的⼈也就看
不到了，输⼊完成点击回⻋就成功连接到了服务器。

如果你⾮要在⼀⾏命令中显式的把密码输出来，那-p和密码值
之间不能有空⽩字符（其他参数名之间可以有空⽩字符），就
像这样：

mysql -h localhost -u root -p123456

如果加上了空⽩字符就是错误的，⽐如这样：

mysql -h localhost -u root -p 123456

mysql的各个参数的摆放顺序没有硬性规定，也就是说你也可
以这么写：

mysql -p -u root -h localhost

如果你的服务器和客户端安装在同⼀台机器上，-h参数可以省
略，就像这样：

mysql -u root -p

如果你使⽤的是类UNIX系统，并且省略-u参数后，会把你登
陆操作系统的⽤户名当作MySQL的⽤户名去处理。

⽐⽅说我⽤登录操作系统的⽤户名是xiaohaizi，那么在我的
机器上下边这两条命令是等价的：

mysql -u xiaohaizi -p
mysql -p

对于Windows系统来说，默认的⽤户名是ODBC，你可以通过
设置环境变量USER来添加⼀个默认⽤户名。

客户端与服务器连接的过程

我们现在已经知道如何启动MySQL的服务器程序，以及如何启动客户
端程序来连接到这个服务器程序。运⾏着的服务器程序和客户端程序
本质上都是计算机上的⼀个进程，所以客户端进程向服务器进程发送
请求并得到回复的过程本质上是⼀个进程间通信的过程！MySQL⽀持
下边三种客户端进程和服务器进程的通信⽅式。

TCP/IP

真实环境中，数据库服务器进程和客户端进程可能运⾏在不同的主机
中，它们之间必须通过⽹络来进⾏通讯。MySQL采⽤TCP作为服务器
和客户端之间的⽹络通信协议。在⽹络环境下，每台计算机都有⼀个
唯⼀的IP地址，如果某个进程有需要采⽤TCP协议进⾏⽹络通信⽅⾯
的需求，可以向操作系统申请⼀个端⼝号，这是⼀个整数值，它的取
值范围是0~65535。这样在⽹络中的其他进程就可以通过IP地址 +
端⼝号的⽅式来与这个进程连接，这样进程之间就可以通过⽹络进⾏
通信了。

MySQL服务器启动的时候会默认申请3306端⼝号，之后就在这个端
⼝号上等待客户端进程进⾏连接，⽤书⾯⼀点的话来说，MySQL服务
器会默认监听3306端⼝。

⼩贴⼠：

`TCP/IP`⽹络体系结构是现在通⽤的⼀种⽹络体系结构，其中的
`TCP`和`IP`是体系结构中两个⾮常重要的⽹络协议，如果你并不
知道协议是什么，或者并不知道⽹络是什么，那恐怕兄弟你来错地
⽅了，找本计算机⽹络的书去瞅瞅吧！

什么？计算机⽹络的书写的都贼恶⼼，看不懂？没关系，等我～

如果3306端⼝号已经被别的进程占⽤了或者我们单纯的想⾃定义该
数据库实例监听的端⼝号，那我们可以在启动服务器程序的命令⾏⾥
添加-P参数来明确指定⼀下端⼝号，⽐如这样：

mysqld -P3307

这样MySQL服务器在启动时就会去监听我们指定的端⼝号3307。

如果客户端进程想要使⽤TCP/IP⽹络来连接到服务器进程，⽐如我
们在使⽤mysql来启动客户端程序时，在-h参数后必须跟随IP地址
来作为需要连接的服务器进程所在主机的主机名，如果客户端进程和
服务器进程在⼀台计算机中的话，我们可以使⽤127.0.0.1来代表
本机的IP地址。另外，如果服务器进程监听的端⼝号不是默认的
3306，我们也可以在使⽤mysql启动客户端程序时使⽤-P参数（⼤
写的P，⼩写的p是⽤来指定密码的）来指定需要连接到的端⼝号。
⽐如我们现在已经在本机启动了服务器进程，监听的端⼝号
为3307，那我们启动客户端程序时可以这样写：

mysql -h127.0.0.1 -uroot -P3307 -p

不知⼤家发现了没有，我们在启动服务器程序的命令mysqld和启动
客户端程序的命令mysql后边都可以使⽤-P参数，关于如何在命令
后边指定参数，指定哪些参数我们稍后会详细唠叨的，稍微等等哈～

命名管道和共享内存

如果你是⼀个Windows⽤户，那么客户端进程和服务器进程之间可
以考虑使⽤命名管道或共享内存进⾏通信。不过启⽤这些通信⽅式的
时候需要在启动服务器程序和客户端程序时添加⼀些参数：

使⽤命名管道来进⾏进程间通信

需要在启动服务器程序的命令中加上--enable-named-pipe
参数，然后在启动客户端程序的命令中加⼊--pipe或者--
protocol=pipe参数。

使⽤共享内存来进⾏进程间通信

需要在启动服务器程序的命令中加上--shared-memory参
数，在成功启动服务器后，共享内存便成为本地客户端程序的
默认连接⽅式，不过我们也可以在启动客户端程序的命令中加

⼊--protocol=memory参数来显式的指定使⽤共享内存进⾏
通信。

不过需要注意的是，使⽤共享内存的⽅式进⾏通信的服务器进
程和客户端进程必须在同⼀台Windows主机中。

⼩贴⼠：

命名管道和共享内存是Windows操作系统中的两种进程间通信⽅
式，如果你没听过的话也不⽤纠结，并不妨碍我们介绍MySQL的知
识～

Unix域套接字⽂件

如果我们的服务器进程和客户端进程都运⾏在同⼀台操作系统为
类Unix的机器上的话，我们可以使⽤Unix域套接字⽂件来进⾏进程
间通信。如果我们在启动客户端程序的时候指定的主机名
为localhost，或者指定了--protocal=socket的启动参数，那
服务器程序和客户端程序之间就可以通过Unix域套接字⽂件来进⾏
通信了。MySQL服务器程序默认监听的Unix域套接字⽂件路径
为/tmp/mysql.sock，客户端程序也默认连接到这个Unix域套接
字⽂件。如果我们想改变这个默认路径，可以在启动服务器程序时指
定socket参数，就像这样：

mysqld --socket=/tmp/a.txt

这样服务器启动后便会监听/tmp/a.txt。在服务器改变了默认的
UNIX域套接字⽂件后，如果客户端程序想通过UNIX域套接字⽂件进
⾏通信的话，也需要显式的指定连接到的UNIX域套接字⽂件路径，
就像这样：

mysql -hlocalhost -uroot --socket=/tmp/a.txt -p

这样该客户端进程和服务器进程就可以通过路径为/tmp/a.txt的
Unix域套接字⽂件进⾏通信了。

服务器处理客户端请求

其实不论客户端进程和服务器进程是采⽤哪种⽅式进⾏通信，最后实
现的效果都是：客户端进程向服务器进程发送⼀段⽂本（MySQL语
句），服务器进程处理后再向客户端进程⼀段⽂本（处理结果）。那
服务器进程对客户端进程发送的请求做了什么处理，才能产⽣最后的
处理结果呢？客户端可以向服务器发送增删改查各类请求，我们这⾥
以⽐较复杂的查询请求为例来画个图展示⼀下⼤致的过程：

从图中我们可以看出，服务器程序处理来⾃客户端的查询请求⼤致需
要经过三个部分，分别是连接管理、解析与优化、存储引擎。下边我
们来详细看⼀下这三个部分都⼲了什么。

连接管理

客户端进程可以采⽤我们上边介绍的TCP/IP、命名管道或共享内
存、Unix域套接字这⼏种⽅式之⼀来与服务器进程建⽴连接，每当
有⼀个客户端进程连接到服务器进程时，服务器进程都会创建⼀个线
程来专⻔处理与这个客户端的交互，当该客户端退出时会与服务器断
开连接，服务器并不会⽴即把与该客户端交互的线程销毁掉，⽽是把
它缓存起来，在另⼀个新的客户端再进⾏连接时，把这个缓存的线程
分配给该新客户端。这样就起到了不频繁创建和销毁线程的效果，从
⽽节省开销。从这⼀点⼤家也能看出，MySQL服务器会为每⼀个连接
进来的客户端分配⼀个线程，但是线程分配的太多了会严重影响系统
性能，所以我们也需要限制⼀下可以同时连接到服务器的客户端数
量，⾄于怎么限制我们后边再说哈～

在客户端程序发起连接的时候，需要携带主机信息、⽤户名、密码，
服务器程序会对客户端程序提供的这些信息进⾏认证，如果认证失
败，服务器程序会拒绝连接。另外，如果客户端程序和服务器程序不
运⾏在⼀台计算机上，我们还可以采⽤使⽤了SSL（安全套接字）的
⽹络连接进⾏通信，来保证数据传输的安全性。

当连接建⽴后，与该客户端关联的服务器线程会⼀直等待客户端发送
过来的请求，MySQL服务器接收到的请求只是⼀个⽂本消息，该⽂本
消息还要经过各种处理，预知后事如何，继续往下看哈～

解析与优化

到现在为⽌，MySQL服务器已经获得了⽂本形式的请求，接着
还要经过九九⼋⼗⼀难的处理，其中的⼏个⽐较重要的部分分别是查
询缓存、语法解析和查询优化，下边我们详细来看。

查询缓存

如果我问你9+8×16-3×2×17的值是多少，你可能会⽤计算器去算⼀
下，或者⽜逼⼀点⽤⼼算，最终得到了结果35，如果我再问你⼀
遍9+8×16-3×2×17的值是多少，你还⽤再傻呵呵的算⼀遍么？我们

刚刚已经算过了，直接说答案就好了。MySQL服务器程序处理查询请
求的过程也是这样，会把刚刚处理过的查询请求和结果缓存起来，如
果下⼀次有⼀模⼀样的请求过来，直接从缓存中查找结果就好了，就
不⽤再傻呵呵的去底层的表中查找了。这个查询缓存可以在不同客户
端之间共享，也就是说如果客户端A刚刚查询了⼀个语句，⽽客户端
B之后发送了同样的查询请求，那么客户端B的这次查询就可以直接
使⽤查询缓存中的数据。

当然，MySQL服务器并没有⼈聪明，如果两个查询请求在任何字符上
的不同（例如：空格、注释、⼤⼩写），都会导致缓存不会命中。另
外，如果查询请求中包含某些系统函数、⽤户⾃定义变量和函数、⼀
些系统表，如 mysql 、information_schema、
performance_schema 数据库中的表，那这个请求就不会被缓存。
以某些系统函数举例，可能同样的函数的两次调⽤会产⽣不⼀样的结
果，⽐如函数NOW，每次调⽤都会产⽣最新的当前时间，如果在⼀个
查询请求中调⽤了这个函数，那即使查询请求的⽂本信息都⼀样，那
不同时间的两次查询也应该得到不同的结果，如果在第⼀次查询时就
缓存了，那第⼆次查询的时候直接使⽤第⼀次查询的结果就是错误
的！

不过既然是缓存，那就有它缓存失效的时候。MySQL的缓存系统会
监测涉及到的每张表，只要该表的结构或者数据被修改，如对该表使
⽤了INSERT、 UPDATE、DELETE、TRUNCATE TABLE、ALTER
TABLE、DROP TABLE或 DROP DATABASE语句，那使⽤该表的所
有⾼速缓存查询都将变为⽆效并从⾼速缓存中删除！

⼩贴⼠：

虽然查询缓存有时可以提升系统性能，但也不得不因维护这块缓存
⽽造成⼀些开销，⽐如每次都要去查询缓存中检索，查询请求处理
完需要更新查询缓存，维护该查询缓存对应的内存区域。从MySQL
5.7.20开始，不推荐使⽤查询缓存，并在MySQL 8.0中删除。

语法解析

如果查询缓存没有命中，接下来就需要进⼊正式的查询阶段了。因为
客户端程序发送过来的请求只是⼀段⽂本⽽已，所以MySQL服务器程
序⾸先要对这段⽂本做分析，判断请求的语法是否正确，然后从⽂本
中将要查询的表、各种查询条件都提取出来放到MySQL服务器内部使
⽤的⼀些数据结构上来。

⼩贴⼠：

这个从指定的⽂本中提取出我们需要的信息本质上算是⼀个编译过
程，涉及词法解析、语法分析、语义分析等阶段，这些问题不属于
我们讨论的范畴，⼤家只要了解在处理请求的过程中需要这个步骤
就好了。

查询优化

语法解析之后，服务器程序获得到了需要的信息，⽐如要查询的列是
哪些，表是哪个，搜索条件是什么等等，但光有这些是不够的，因为
我们写的MySQL语句执⾏起来效率可能并不是很⾼，MySQL的优化程
序会对我们的语句做⼀些优化，如外连接转换为内连接、表达式简
化、⼦查询转为连接吧啦吧啦的⼀堆东⻄。优化的结果就是⽣成⼀个
执⾏计划，这个执⾏计划表明了应该使⽤哪些索引进⾏查询，表之间
的连接顺序是啥样的。我们可以使⽤EXPLAIN语句来查看某个语句
的执⾏计划，关于查询优化这部分的详细内容我们后边会仔细唠叨，
现在你只需要知道在MySQL服务器程序处理请求的过程中有这么⼀个
步骤就好了。

存储引擎

截⽌到服务器程序完成了查询优化为⽌，还没有真正的去访问真实的
数据表，MySQL服务器把数据的存储和提取操作都封装到了⼀个叫存
储引擎的模块⾥。我们知道表是由⼀⾏⼀⾏的记录组成的，但这只是

⼀个逻辑上的概念，物理上如何表示记录，怎么从表中读取数据，怎
么把数据写⼊具体的物理存储器上，这都是存储引擎负责的事情。为
了实现不同的功能，MySQL提供了各式各样的存储引擎，不同存储引
擎管理的表具体的存储结构可能不同，采⽤的存取算法也可能不同。

⼩贴⼠：

为什么叫`引擎`呢？因为这个名字更拉⻛～ 其实这个存储引擎以前
叫做`表处理器`，后来可能⼈们觉得太⼟，就改成了`存储引擎`的
叫法，它的功能就是接收上层传下来的指令，然后对表中的数据进
⾏提取或写⼊操作。

为了管理⽅便，⼈们把连接管理、查询缓存、语法解析、查询优化这
些并不涉及真实数据存储的功能划分为MySQL server的功能，把
真实存取数据的功能划分为存储引擎的功能。各种不同的存储引擎向
上边的MySQL server层提供统⼀的调⽤接⼝（也就是存储引擎
API），包含了⼏⼗个底层函数，像"读取索引第⼀条内容"、"读取索
引下⼀条内容"、"插⼊记录"等等。

所以在MySQL server完成了查询优化后，只需按照⽣成的执⾏计
划调⽤底层存储引擎提供的API，获取到数据后返回给客户端就好
了。

常⽤存储引擎

MySQL⽀持⾮常多种存储引擎，我这先列举⼀些：

存储引擎 描述

ARCHIVE ⽤与数据存档（⾏被插⼊后不能再修改）
BLACKHOLE 丢弃写操作，读操作会返回空内容

CSV 在存储数据时，以逗号分隔各个数据项

FEDERATED ⽤来访问远程表

InnoDB 具备外键⽀持功能的事务存储引擎

MEMORY 置于内存的表

MERGE ⽤来管理多个MyISAM表构成的表集合
MyISAM 主要的⾮事务处理存储引擎

NDB MySQL集群专⽤存储引擎

这么多我们怎么挑啊，哈哈，你多虑了，其实我们最常⽤的就
是InnoDB和MyISAM，有时会提⼀下Memory。其中InnoDB
是MySQL默认的存储引擎，我们之后会详细唠叨这个存储引擎的各种
功能，现在先看⼀下⼀些存储引擎对于某些功能的⽀持情况：

Feature MyISAMMemory InnoDBArchive NDB
B-tree indexes yes yes yes no no

Backup/point-in-
time recovery yes yes yes yes yes

Cluster database
support no no no no yes

Clustered indexes no no yes no no
Compressed data yes no yes yes no

Data caches no N/A yes no yes
Encrypted data yes yes yes yes yes

Foreign key support no no yes no yes
Full-text search

indexes yes no yes no no

Geospatial data type
support yes no yes yes yes

Geospatial indexing
support yes no yes no no

Hash indexes no yes no no yes
Index caches yes N/A yes no yes

Locking granularity Table Table Row Row Row
MVCC no no yes no no

Query cache support yes yes yes yes yes
Replication support yes Limited yes yes yes

Storage limits 256TB RAM 64TB None 384EB
T-tree indexes no no no no yes
Transactions no no yes no yes

Update statistics for
data dictionary yes yes yes yes yes

密密麻麻列了这么多，看的头⽪都发麻了，达到的效果就是告诉你：
这玩意⼉很复杂。其实这些东⻄⼤家没必要⽴即就给记住，我列出来
的⽬的就是想让⼤家明⽩不同的存储引擎⽀持不同的功能，有些重要
的功能我们会在后边的唠叨中慢慢让⼤家理解的～

关于存储引擎的⼀些操作

查看当前服务器程序⽀持的存储引擎

我们可以⽤下边这个命令来查看当前服务器程序⽀持的存储引擎：

SHOW ENGINES;

来看⼀下调⽤效果：

mysql> SHOW ENGINES;
+--------------------+---------+-----------------
---+-
-------------+------+------------+
| Engine | Support | Comment
| Transactions | XA | Savepoints |
+--------------------+---------+-----------------
---+-
-------------+------+------------+
| InnoDB | DEFAULT | Supports

transactions, row-level locking, and foreign keys
| YES | YES | YES |
| MRG_MYISAM | YES | Collection of
identical MyISAM tables
| NO | NO | NO |
| MEMORY | YES | Hash based,
stored in memory, useful for temporary tables
| NO | NO | NO |
| BLACKHOLE | YES | /dev/null
storage engine (anything you write to it
disappears) | NO | NO | NO |
| MyISAM | YES | MyISAM storage
engine |
NO | NO | NO |
| CSV | YES | CSV storage
engine
| NO | NO | NO |
| ARCHIVE | YES | Archive storage
engine |
NO | NO | NO |
| PERFORMANCE_SCHEMA | YES | Performance
Schema
| NO | NO | NO |
| FEDERATED | NO | Federated MySQL
storage engine |
NULL | NULL | NULL |
+--------------------+---------+-----------------
---+-
-------------+------+------------+
9 rows in set (0.00 sec)

mysql>

其中的Support列表示该存储引擎是否可⽤，DEFAULT值代表是当
前服务器程序的默认存储引擎。Comment列是对存储引擎的⼀个描
述，英⽂的，将就着看吧。Transactions列代表该存储引擎是否
⽀持事务处理。XA列代表着该存储引擎是否⽀持分布式事
务。Savepoints代表着该列是否⽀持部分事务回滚。

⼩贴⼠：

好吧，也许你并不知道什么是个事务、更别提分布式事务了，这些
内容我们在后边的章节会详细唠叨，现在瞅⼀眼看个新鲜就得了。

设置表的存储引擎

我们前边说过，存储引擎是负责对表中的数据进⾏提取和写⼊⼯作
的，我们可以为不同的表设置不同的存储引擎，也就是说不同的表可
以有不同的物理存储结构，不同的提取和写⼊⽅式。

创建表时指定存储引擎

我们之前创建表的语句都没有指定表的存储引擎，那就会使⽤默认的
存储引擎InnoDB（当然这个默认的存储引擎也是可以修改的，我们
在后边的章节中再说怎么改）。如果我们想显式的指定⼀下表的存储
引擎，那可以这么写：

CREATE TABLE 表名(
 建表语句;
) ENGINE = 存储引擎名称;

⽐如我们想创建⼀个存储引擎为MyISAM的表可以这么写：

mysql> CREATE TABLE engine_demo_table(
 -> i int
 ->) ENGINE = MyISAM;
Query OK, 0 rows affected (0.02 sec)

mysql>

修改表的存储引擎

如果表已经建好了，我们也可以使⽤下边这个语句来修改表的存储引
擎：

ALTER TABLE 表名 ENGINE = 存储引擎名称;

⽐如我们修改⼀下engine_demo_table表的存储引擎：

mysql> ALTER TABLE engine_demo_table ENGINE =
InnoDB;
Query OK, 0 rows affected (0.05 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql>

这时我们再查看⼀下engine_demo_table的表结构：

mysql> SHOW CREATE TABLE engine_demo_table\G
*************************** 1. row

 Table: engine_demo_table
Create Table: CREATE TABLE `engine_demo_table` (
 `i` int(11) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8
1 row in set (0.01 sec)

mysql>

可以看到该表的存储引擎已经改为InnoDB了。

