
B+树索引的使⽤
标签： MySQL 是怎样运⾏的

我们前边详细、详细⼜详细的唠叨了InnoDB存储引擎的B+树索引，
我们必须熟悉下边这些结论：

每个索引都对应⼀棵B+树，B+树分为好多层，最下边⼀层是叶
⼦节点，其余的是内节点。所有⽤户记录都存储在B+树的叶⼦
节点，所有⽬录项记录都存储在内节点。

InnoDB存储引擎会⾃动为主键（如果没有它会⾃动帮我们添
加）建⽴聚簇索引，聚簇索引的叶⼦节点包含完整的⽤户记
录。

我们可以为⾃⼰感兴趣的列建⽴⼆级索引，⼆级索引的叶⼦节
点包含的⽤户记录由索引列 + 主键组成，所以如果想通过⼆
级索引来查找完整的⽤户记录的话，需要通过回表操作，也就
是在通过⼆级索引找到主键值之后再到聚簇索引中查找完整的
⽤户记录。

B+树中每层节点都是按照索引列值从⼩到⼤的顺序排序⽽组成
了双向链表，⽽且每个⻚内的记录（不论是⽤户记录还是⽬录
项记录）都是按照索引列的值从⼩到⼤的顺序⽽形成了⼀个单
链表。如果是联合索引的话，则⻚⾯和记录按照先按照联合索
引前边的列排序，如果该列值相同，再按照联合索引后边的列
排序。

通过索引查找记录是从B+树的根节点开始，⼀层⼀层向下搜
索。由于每个⻚⾯都按照索引列的值建⽴了Page
Directory（⻚⽬录），所以在这些⻚⾯中的查找⾮常快。

如果你读上边的⼏点结论有些任何⼀点点疑惑的话，那下边的内容不
适合你，回过头先去看前边的内容去。

索引的代价

在熟悉了B+树索引原理之后，本篇⽂章的主题是唠叨如何更好的使
⽤索引，虽然索引是个好东⻄，可不能乱建，在介绍如何更好的使⽤
索引之前先要了解⼀下使⽤这玩意⼉的代价，它在空间和时间上都会
拖后腿：

空间上的代价

这个是显⽽易⻅的，每建⽴⼀个索引都为要它建⽴⼀棵B+树，
每⼀棵B+树的每⼀个节点都是⼀个数据⻚，⼀个⻚默认会占
⽤16KB的存储空间，⼀棵很⼤的B+树由许多数据⻚组成，那
可是很⼤的⼀⽚存储空间呢。

时间上的代价

每次对表中的数据进⾏增、删、改操作时，都需要去修改各
个B+树索引。⽽且我们讲过，B+树每层节点都是按照索引列的
值从⼩到⼤的顺序排序⽽组成了双向链表。不论是叶⼦节点中
的记录，还是内节点中的记录（也就是不论是⽤户记录还是⽬
录项记录）都是按照索引列的值从⼩到⼤的顺序⽽形成了⼀个
单向链表。⽽增、删、改操作可能会对节点和记录的排序造成
破坏，所以存储引擎需要额外的时间进⾏⼀些记录移位，⻚⾯
分裂、⻚⾯回收啥的操作来维护好节点和记录的排序。如果我
们建了许多索引，每个索引对应的B+树都要进⾏相关的维护操
作，这还能不给性能拖后腿么？

所以说，⼀个表上索引建的越多，就会占⽤越多的存储空间，在增删
改记录的时候性能就越差。为了能建⽴⼜好⼜少的索引，我们先得学
学这些索引在哪些条件下起作⽤的。

B+树索引适⽤的条件

下边我们将唠叨许多种让B+树索引发挥最⼤效能的技巧和注意事
项，不过⼤家要清楚，所有的技巧都是源⾃你对B+树索引本质的理
解，所以如果你还不能保证对B+树索引充分的理解，那么再次建议
回过头把前边的内容看完了再来，要不然读⽂章对你来说是⼀种折
磨。⾸先，B+树索引并不是万能的，并不是所有的查询语句都能⽤
到我们建⽴的索引。下边介绍⼏个我们可能使⽤B+树索引来进⾏查
询的情况。为了故事的顺利发展，我们需要先创建⼀个表，这个表是
⽤来存储⼈的⼀些基本信息的：

CREATE TABLE person_info(
 id INT NOT NULL auto_increment,
 name VARCHAR(100) NOT NULL,
 birthday DATE NOT NULL,
 phone_number CHAR(11) NOT NULL,
 country varchar(100) NOT NULL,
 PRIMARY KEY (id),
 KEY idx_name_birthday_phone_number (name,
birthday, phone_number)
);

对于这个person_info表我们需要注意两点：

表中的主键是id列，它存储⼀个⾃动递增的整数。所以
InnoDB存储引擎会⾃动为id列建⽴聚簇索引。

我们额外定义了⼀个⼆级索
引idx_name_birthday_phone_number，它是由3个列组
成的联合索引。所以在这个索引对应的B+树的叶⼦节点处存储
的⽤户记录只保留name、birthday、phone_number这三个
列的值以及主键id的值，并不会保存country列的值。

从这两点注意中我们可以再次看到，⼀个表中有多少索引就会建⽴多
少棵B+树，person_info表会为聚簇索引和
idx_name_birthday_phone_number索引建⽴2棵B+树。下边我
们画⼀下索引idx_name_birthday_phone_number的示意图，不
过既然我们已经掌握了InnoDB的B+树索引原理，那我们在画图的时
候为了让图更加清晰，所以在省略⼀些不必要的部分，⽐如记录的额
外信息，各⻚⾯的⻚号等等，其中内节点中⽬录项记录的⻚号信息我
们⽤箭头来代替，在记录结构中只保
留name、birthday、phone_number、id这四个列的真实数据
值，所以示意图就⻓这样（留⼼的同学看出来了，这其实和《⾼性能
MySQL》⾥举的例⼦的图差不多，我觉得这个例⼦特别好，所以就
借鉴了⼀下）：

为了⽅便⼤家理解，我们特意标明了哪些是内节点，哪些是叶⼦节
点。再次强调⼀下，内节点中存储的是⽬录项记录，叶⼦节点中存储
的是⽤户记录（由于不是聚簇索引，所以⽤户记录是不完整的，缺
少country列的值）。从图中可以看出，这
个idx_name_birthday_phone_number索引对应的B+树中⻚⾯
和记录的排序⽅式就是这样的：

先按照name列的值进⾏排序。
如果name列的值相同，则按照birthday列的值进⾏排序。
如果birthday列的值也相同，则按照phone_number的值进

⾏排序。

这个排序⽅式⼗分、特别、⾮常、巨、very very very重要，因为只
要⻚⾯和记录是排好序的，我们就可以通过⼆分法来快速定位查找。
下边的内容都仰仗这个图了，⼤家对照着图理解。

全值匹配

如果我们的搜索条件中的列和索引列⼀致的话，这种情况就称为全值
匹配，⽐⽅说下边这个查找语句：

SELECT * FROM person_info WHERE name = 'Ashburn'
AND birthday = '1990-09-27' AND phone_number =
'15123983239';

我们建⽴的idx_name_birthday_phone_number索引包含的3个
列在这个查询语句中都展现出来了。⼤家可以想象⼀下这个查询过
程：

因为B+树的数据⻚和记录先是按照name列的值进⾏排序的，
所以先可以很快定位name列的值是Ashburn的记录位置。

在name列相同的记录⾥⼜是按照birthday列的值进⾏排序
的，所以在name列的值是Ashburn的记录⾥⼜可以快速定
位birthday列的值是'1990-09-27'的记录。

如果很不幸，name和birthday列的值都是相同的，那记录是
按照phone_number列的值排序的，所以联合索引中的三个列
都可能被⽤到。

有的同学也许有个疑问，WHERE⼦句中的⼏个搜索条件的顺序对查询
结果有啥影响么？也就是说如果我们调
换name、birthday、phone_number这⼏个搜索列的顺序对查询
的执⾏过程有影响么？⽐⽅说写成下边这样：

SELECT * FROM person_info WHERE birthday = '1990-
09-27' AND phone_number = '15123983239' AND name
= 'Ashburn';

答案是：没影响哈。MySQL有⼀个叫查询优化器的东东，会分析这些
搜索条件并且按照可以使⽤的索引中列的顺序来决定先使⽤哪个搜索
条件，后使⽤哪个搜索条件。我们后边⼉会有专⻔的章节来介绍查询
优化器，敬请期待。

匹配左边的列

其实在我们的搜索语句中也可以不⽤包含全部联合索引中的列，只包
含左边的就⾏，⽐⽅说下边的查询语句：

SELECT * FROM person_info WHERE name = 'Ashburn';

或者包含多个左边的列也⾏：

SELECT * FROM person_info WHERE name = 'Ashburn'
AND birthday = '1990-09-27';

那为什么搜索条件中必须出现左边的列才可以使⽤到这个B+树索引
呢？⽐如下边的语句就⽤不到这个B+树索引么？

SELECT * FROM person_info WHERE birthday = '1990-
09-27';

是的，的确⽤不到，因为B+树的数据⻚和记录先是按照name列的值
排序的，在name列的值相同的情况下才使⽤birthday列进⾏排
序，也就是说name列的值不同的记录中birthday的值可能是⽆序
的。⽽现在你跳过name列直接根据birthday的值去查找，⾂妾做
不到呀～ 那如果我就想在只使⽤birthday的值去通过B+树索引进
⾏查找咋办呢？这好办，你再对birthday列建⼀个B+树索引就⾏
了，创建索引的语法不⽤我唠叨了吧。

但是需要特别注意的⼀点是，如果我们想使⽤联合索引中尽可能多的
列，搜索条件中的各个列必须是联合索引中从最左边连续的列。⽐⽅
说联合索引idx_name_birthday_phone_number中列的定义顺序
是name、birthday、phone_number，如果我们的搜索条件中只
有name和phone_number，⽽没有中间的birthday，⽐⽅说这
样：

SELECT * FROM person_info WHERE name = 'Ashburn'
AND phone_number = '15123983239';

这样只能⽤到name列的索引，birthday和phone_number的索引
就⽤不上了，因为name值相同的记录先按照birthday的值进⾏排
序，birthday值相同的记录才按照phone_number值进⾏排序。

匹配列前缀

我们前边说过为某个列建⽴索引的意思其实就是在对应的B+树的记
录中使⽤该列的值进⾏排序，⽐⽅说person_info表上建⽴的联合
索引idx_name_birthday_phone_number会先⽤name列的值进
⾏排序，所以这个联合索引对应的B+树中的记录的name列的排列就
是这样的：

Aaron
Aaron
...
Aaron
Asa
Ashburn
...
Ashburn
Baird
Barlow
...
Barlow

字符串排序的本质就是⽐较哪个字符串⼤⼀点⼉，哪个字符串⼩⼀
点，⽐较字符串⼤⼩就⽤到了该列的字符集和⽐较规则，这个我们前
边⼉唠叨过，就不多唠叨了。这⾥需要注意的是，⼀般的⽐较规则都
是逐个⽐较字符的⼤⼩，也就是说我们⽐较两个字符串的⼤⼩的过程
其实是这样的：

先⽐较字符串的第⼀个字符，第⼀个字符⼩的那个字符串就⽐
较⼩。

如果两个字符串的第⼀个字符相同，那就再⽐较第⼆个字符，
第⼆个字符⽐较⼩的那个字符串就⽐较⼩。

如果两个字符串的第⼆个字符也相同，那就接着⽐较第三个字
符，依此类推。

所以⼀个排好序的字符串列其实有这样的特点：

先按照字符串的第⼀个字符进⾏排序。

如果第⼀个字符相同再按照第⼆个字符进⾏排序。

如果第⼆个字符相同再按照第三个字符进⾏排序，依此类推。

也就是说这些字符串的前n个字符，也就是前缀都是排好序的，所以
对于字符串类型的索引列来说，我们只匹配它的前缀也是可以快速定
位记录的，⽐⽅说我们想查询名字以'As'开头的记录，那就可以这
么写查询语句：

SELECT * FROM person_info WHERE name LIKE 'As%';

但是需要注意的是，如果只给出后缀或者中间的某个字符串，⽐如这
样：

SELECT * FROM person_info WHERE name LIKE '%As%';

MySQL就⽆法快速定位记录位置了，因为字符串中间有'As'的字符
串并没有排好序，所以只能全表扫描了。有时候我们有⼀些匹配某些
字符串后缀的需求，⽐⽅说某个表有⼀个url列，该列中存储了许多
url：

+----------------+
| url |
+----------------+
| www.baidu.com |
| www.google.com |
| www.gov.cn |
| ... |
| www.wto.org |
+----------------+

假设已经对该url列创建了索引，如果我们想查询以com为后缀的⽹
址的话可以这样写查询条件：WHERE url LIKE '%com'，但是这
样的话⽆法使⽤该url列的索引。为了在查询时⽤到这个索引⽽不⾄
于全表扫描，我们可以把后缀查询改写成前缀查询，不过我们就得把
表中的数据全部逆序存储⼀下，也就是说我们可以这样保存url列中
的数据：

+----------------+
| url |
+----------------+
| moc.udiab.www |
| moc.elgoog.www |
| nc.vog.www |
| ... |
| gro.otw.www |
+----------------+

这样再查找以com为后缀的⽹址时搜索条件便可以这么写：WHERE
url LIKE 'moc%'，这样就可以⽤到索引了。

匹配范围值

回头看我们idx_name_birthday_phone_number索引的B+树示
意图，所有记录都是按照索引列的值从⼩到⼤的顺序排好序的，所以
这极⼤的⽅便我们查找索引列的值在某个范围内的记录。⽐⽅说下边
这个查询语句：

SELECT * FROM person_info WHERE name > 'Asa' AND
name < 'Barlow';

由于B+树中的数据⻚和记录是先按name列排序的，所以我们上边的
查询过程其实是这样的：

找到name值为Asa的记录。
找到name值为Barlow的记录。
哦啦，由于所有记录都是由链表连起来的（记录之间⽤单链
表，数据⻚之间⽤双链表），所以他们之间的记录都可以很容
易的取出来喽～
找到这些记录的主键值，再到聚簇索引中回表查找完整的记
录。

不过在使⽤联合进⾏范围查找的时候需要注意，如果对多个列同时进
⾏范围查找的话，只有对索引最左边的那个列进⾏范围查找的时候才
能⽤到B+树索引，⽐⽅说这样：

SELECT * FROM person_info WHERE name > 'Asa' AND
name < 'Barlow' AND birthday > '1980-01-01';

上边这个查询可以分成两个部分：

1. 通过条件name > 'Asa' AND name < 'Barlow'来对
name进⾏范围，查找的结果可能有多条name值不同的记录，

2. 对这些name值不同的记录继续通过birthday > '1980-01-
01'条件继续过滤。

这样⼦对于联合索引idx_name_birthday_phone_number来说，
只能⽤到name列的部分，⽽⽤不到birthday列的部分，因为只
有name值相同的情况下才能⽤birthday列的值进⾏排序，⽽这个
查询中通过name进⾏范围查找的记录中可能并不是按照birthday
列进⾏排序的，所以在搜索条件中继续以birthday列进⾏查找时是
⽤不到这个B+树索引的。

精确匹配某⼀列并范围匹配另外⼀列

对于同⼀个联合索引来说，虽然对多个列都进⾏范围查找时只能⽤到
最左边那个索引列，但是如果左边的列是精确查找，则右边的列可以
进⾏范围查找，⽐⽅说这样：

SELECT * FROM person_info WHERE name = 'Ashburn'
AND birthday > '1980-01-01' AND birthday < '2000-
12-31' AND phone_number > '15100000000';

这个查询的条件可以分为3个部分：

1. name = 'Ashburn'，对name列进⾏精确查找，当然可以使
⽤B+树索引了。

2. birthday > '1980-01-01' AND birthday < '2000-
12-31'，由于name列是精确查找，所以通过name =
'Ashburn'条件查找后得到的结果的name值都是相同的，它
们会再按照birthday的值进⾏排序。所以此时对birthday
列进⾏范围查找是可以⽤到B+树索引的。

3. phone_number > '15100000000'，通过birthday的范
围查找的记录的birthday的值可能不同，所以这个条件⽆法
再利⽤B+树索引了，只能遍历上⼀步查询得到的记录。

同理，下边的查询也是可能⽤到这
个idx_name_birthday_phone_number联合索引的：

SELECT * FROM person_info WHERE name = 'Ashburn'
AND birthday = '1980-01-01' AND AND phone_number
> '15100000000';

⽤于排序

我们在写查询语句的时候经常需要对查询出来的记录通过ORDER BY
⼦句按照某种规则进⾏排序。⼀般情况下，我们只能把记录都加载到
内存中，再⽤⼀些排序算法，⽐如快速排序、归并排序、吧啦吧啦排
序等等在内存中对这些记录进⾏排序，有的时候可能查询的结果集太
⼤以⾄于不能在内存中进⾏排序的话，还可能暂时借助磁盘的空间来
存放中间结果，排序操作完成后再把排好序的结果集返回到客户端。
在MySQL中，把这种在内存中或者磁盘上进⾏排序的⽅式统称为⽂件
排序（英⽂名：filesort），跟⽂件这个词⼉⼀沾边⼉，就显得这
些排序操作⾮常慢了（磁盘和内存的速度⽐起来，就像是⻜机和蜗⽜
的对⽐）。但是如果ORDER BY⼦句⾥使⽤到了我们的索引列，就有
可能省去在内存或⽂件中排序的步骤，⽐如下边这个简单的查询语
句：

SELECT * FROM person_info ORDER BY name,
birthday, phone_number LIMIT 10;

这个查询的结果集需要先按照name值排序，如果记录的name值相
同，则需要按照birthday来排序，如果birthday的值相同，则需
要按照phone_number排序。⼤家可以回过头去看我们建⽴的
idx_name_birthday_phone_number索引的示意图，因为这
个B+树索引本身就是按照上述规则排好序的，所以直接从索引中提
取数据，然后进⾏回表操作取出该索引中不包含的列就好了。简单
吧？是的，索引就是这么⽜逼。

使⽤联合索引进⾏排序注意事项

对于联合索引有个问题需要注意，ORDER BY的⼦句后边的列的顺序
也必须按照索引列的顺序给出，如果给出ORDER BY
phone_number, birthday, name的顺序，那也是⽤不了B+树索
引，这种颠倒顺序就不能使⽤索引的原因我们上边详细说过了，这就
不赘述了。

同理，ORDER BY name、ORDER BY name, birthday这种匹配
索引左边的列的形式可以使⽤部分的B+树索引。当联合索引左边列
的值为常量，也可以使⽤后边的列进⾏排序，⽐如这样：

SELECT * FROM person_info WHERE name = 'A' ORDER
BY birthday, phone_number LIMIT 10;

这个查询能使⽤联合索引进⾏排序是因为name列的值相同的记录是
按照birthday, phone_number排序的，说了好多遍了都。

不可以使⽤索引进⾏排序的⼏种情况

ASC、DESC混⽤

对于使⽤联合索引进⾏排序的场景，我们要求各个排序列的排序顺序
是⼀致的，也就是要么各个列都是ASC规则排序，要么都是DESC规
则排序。

⼩贴⼠：

ORDER BY⼦句后的列如果不加ASC或者DESC默认是按照ASC排序规
则排序的，也就是升序排序的。

为啥会有这种奇葩规定呢？这个还得回头想想这
个idx_name_birthday_phone_number联合索引中记录的结构：

先按照记录的name列的值进⾏升序排列。

如果记录的name列的值相同，再按照birthday列的值进⾏升
序排列。

如果记录的birthday列的值相同，再按照phone_number列
的值进⾏升序排列。

如果查询中的各个排序列的排序顺序是⼀致的，⽐⽅说下边这两种情
况：

ORDER BY name, birthday LIMIT 10

这种情况直接从索引的最左边开始往右读10⾏记录就可以了。

ORDER BY name DESC, birthday DESC LIMIT 10，

这种情况直接从索引的最右边开始往左读10⾏记录就可以了。

但是如果我们查询的需求是先按照name列进⾏升序排列，再按
照birthday列进⾏降序排列的话，⽐如说这样的查询语句：

SELECT * FROM person_info ORDER BY name, birthday
DESC LIMIT 10;

这样如果使⽤索引排序的话过程就是这样的：

先从索引的最左边确定name列最⼩的值，然后找到name列等
于该值的所有记录，然后从name列等于该值的最右边的那条记
录开始往左找10条记录。

如果name列等于最⼩的值的记录不⾜10条，再继续往右
找name值第⼆⼩的记录，重复上边那个过程，直到找到10条
记录为⽌。

累不累？累！重点是这样不能⾼效使⽤索引，⽽要采取更复杂的算法
去从索引中取数据，设计MySQL的⼤叔觉得这样还不如直接⽂件排序
来的快，所以就规定使⽤联合索引的各个排序列的排序顺序必须是⼀
致的。

WHERE⼦句中出现⾮排序使⽤到的索引列

如果WHERE⼦句中出现了⾮排序使⽤到的索引列，那么排序依然是
使⽤不到索引的，⽐⽅说这样：

SELECT * FROM person_info WHERE country = 'China'
ORDER BY name LIMIT 10;

这个查询只能先把符合搜索条件country = 'China'的记录提取
出来后再进⾏排序，是使⽤不到索引。注意和下边这个查询作区别：

SELECT * FROM person_info WHERE name = 'A' ORDER
BY birthday, phone_number LIMIT 10;

虽然这个查询也有搜索条件，但是name = 'A'可以使⽤到索
引idx_name_birthday_phone_number，⽽且过滤剩下的记录还
是按照birthday、phone_number列排序的，所以还是可以使⽤索
引进⾏排序的。

排序列包含⾮同⼀个索引的列

有时候⽤来排序的多个列不是⼀个索引⾥的，这种情况也不能使⽤索
引进⾏排序，⽐⽅说：

SELECT * FROM person_info ORDER BY name, country
LIMIT 10;

name和country并不属于⼀个联合索引中的列，所以⽆法使⽤索引
进⾏排序，⾄于为啥我就不想再唠叨了，⾃⼰⽤前边的理论⾃⼰捋⼀
捋把～

排序列使⽤了复杂的表达式

要想使⽤索引进⾏排序操作，必须保证索引列是以单独列的形式出
现，⽽不是修饰过的形式，⽐⽅说这样：

SELECT * FROM person_info ORDER BY UPPER(name)
LIMIT 10;

使⽤了UPPER函数修饰过的列就不是单独的列啦，这样就⽆法使⽤索
引进⾏排序啦。

⽤于分组

有时候我们为了⽅便统计表中的⼀些信息，会把表中的记录按照某些
列进⾏分组。⽐如下边这个分组查询：

SELECT name, birthday, phone_number, COUNT(*)
FROM person_info GROUP BY name, birthday,
phone_number

这个查询语句相当于做了3次分组操作：

1. 先把记录按照name值进⾏分组，所有name值相同的记录划分
为⼀组。

2. 将每个name值相同的分组⾥的记录再按照birthday的值进⾏
分组，将birthday值相同的记录放到⼀个⼩分组⾥，所以看
起来就像在⼀个⼤分组⾥⼜化分了好多⼩分组。

3. 再将上⼀步中产⽣的⼩分组按照phone_number的值分成更⼩
的分组，所以整体上看起来就像是先把记录分成⼀个⼤分组，
然后把⼤分组分成若⼲个⼩分组，然后把若⼲个⼩分组再细分
成更多的⼩⼩分组。

然后针对那些⼩⼩分组进⾏统计，⽐如在我们这个查询语句中就是统
计每个⼩⼩分组包含的记录条数。如果没有索引的话，这个分组过程
全部需要在内存⾥实现，⽽如果有了索引的话，恰巧这个分组顺序⼜
和我们的B+树中的索引列的顺序是⼀致的，⽽我们的B+树索引⼜是
按照索引列排好序的，这不正好么，所以可以直接使⽤B+树索引进
⾏分组。

和使⽤B+树索引进⾏排序是⼀个道理，分组列的顺序也需要和索引
列的顺序⼀致，也可以只使⽤索引列中左边的列进⾏分组，吧啦吧啦
的～

回表的代价

上边的讨论对回表这个词⼉多是⼀带⽽过，可能⼤家没啥深刻的体
会，下边我们详细唠叨下。还是
⽤idx_name_birthday_phone_number索引为例，看下边这个查
询：

SELECT * FROM person_info WHERE name > 'Asa' AND
name < 'Barlow';

在使⽤idx_name_birthday_phone_number索引进⾏查询时⼤致
可以分为这两个步骤：

1. 从索引idx_name_birthday_phone_number对应的B+树中
取出name值在Asa～Barlow之间的⽤户记录。

2. 由于索引idx_name_birthday_phone_number对应的B+树
⽤户记录中只包含name、age、birthday、id这4个字段，
⽽查询列表是*，意味着要查询表中所有字段，也就是还要包
括country字段。这时需要把从上⼀步中获取到的每⼀条记录
的id字段都到聚簇索引对应的B+树中找到完整的⽤户记录，也
就是我们通常所说的回表，然后把完整的⽤户记录返回给查询
⽤户。

由于索引idx_name_birthday_phone_number对应的B+树中的
记录⾸先会按照name列的值进⾏排序，所以值在Asa～Barlow之间
的记录在磁盘中的存储是相连的，集中分布在⼀个或⼏个数据⻚中，
我们可以很快的把这些连着的记录从磁盘中读出来，这种读取⽅式我
们也可以称为顺序I/O。根据第1步中获取到的记录的id字段的值可
能并不相连，⽽在聚簇索引中记录是根据id（也就是主键）的顺序
排列的，所以根据这些并不连续的id值到聚簇索引中访问完整的⽤
户记录可能分布在不同的数据⻚中，这样读取完整的⽤户记录可能要
访问更多的数据⻚，这种读取⽅式我们也可以称为随机I/O。⼀般情
况下，顺序I/O⽐随机I/O的性能⾼很多，所以步骤1的执⾏可能很
快，⽽步骤2就慢⼀些。所以这个使⽤索
引idx_name_birthday_phone_number的查询有这么两个特点：

会使⽤到两个B+树索引，⼀个⼆级索引，⼀个聚簇索引。

访问⼆级索引使⽤顺序I/O，访问聚簇索引使⽤随机I/O。

需要回表的记录越多，使⽤⼆级索引的性能就越低，甚⾄让某些查询
宁愿使⽤全表扫描也不使⽤⼆级索引。⽐⽅说name值在Asa
～Barlow之间的⽤户记录数量占全部记录数量90%以上，那么如果
使⽤idx_name_birthday_phone_number索引的话，有90%多的
id值需要回表，这不是吃⼒不讨好么，还不如直接去扫描聚簇索引
（也就是全表扫描）。

那什么时候采⽤全表扫描的⽅式，什么使⽤采⽤⼆级索引 + 回表的
⽅式去执⾏查询呢？这个就是传说中的查询优化器做的⼯作，查询优
化器会事先对表中的记录计算⼀些统计数据，然后再利⽤这些统计数
据根据查询的条件来计算⼀下需要回表的记录数，需要回表的记录数
越多，就越倾向于使⽤全表扫描，反之倾向于使⽤⼆级索引 + 回表
的⽅式。当然优化器做的分析⼯作不仅仅是这么简单，但是⼤致上是
个这个过程。⼀般情况下，限制查询获取较少的记录数会让优化器更
倾向于选择使⽤⼆级索引 + 回表的⽅式进⾏查询，因为回表的记录
越少，性能提升就越⾼，⽐⽅说上边的查询可以改写成这样：

SELECT * FROM person_info WHERE name > 'Asa' AND
name < 'Barlow' LIMIT 10;

添加了LIMIT 10的查询更容易让优化器采⽤⼆级索引 + 回表的⽅
式进⾏查询。

对于有排序需求的查询，上边讨论的采⽤全表扫描还是⼆级索引 +
回表的⽅式进⾏查询的条件也是成⽴的，⽐⽅说下边这个查询：

SELECT * FROM person_info ORDER BY name,
birthday, phone_number;

由于查询列表是*，所以如果使⽤⼆级索引进⾏排序的话，需要把排
序完的⼆级索引记录全部进⾏回表操作，这样操作的成本还不如直接
遍历聚簇索引然后再进⾏⽂件排序（filesort）低，所以优化器会
倾向于使⽤全表扫描的⽅式执⾏查询。如果我们加了LIMIT⼦句，⽐
如这样：

SELECT * FROM person_info ORDER BY name,
birthday, phone_number LIMIT 10;

这样需要回表的记录特别少，优化器就会倾向于使⽤⼆级索引 + 回
表的⽅式执⾏查询。

覆盖索引

为了彻底告别回表操作带来的性能损耗，我们建议：最好在查询列表
⾥只包含索引列，⽐如这样：

SELECT name, birthday, phone_number FROM
person_info WHERE name > 'Asa' AND name <
'Barlow'

因为我们只查询name, birthday, phone_number这三个索引列的
值，所以在通过idx_name_birthday_phone_number索引得到结
果后就不必到聚簇索引中再查找记录的剩余列，也就是country列
的值了，这样就省去了回表操作带来的性能损耗。我们把这种只需要
⽤到索引的查询⽅式称为索引覆盖。排序操作也优先使⽤覆盖索引的
⽅式进⾏查询，⽐⽅说这个查询：

SELECT name, birthday, phone_number FROM
person_info ORDER BY name, birthday,
phone_number;

虽然这个查询中没有LIMIT⼦句，但是采⽤了覆盖索引，所以查询优
化器就会直接使⽤idx_name_birthday_phone_number索引进⾏
排序⽽不需要回表操作了。

当然，如果业务需要查询出索引以外的列，那还是以保证业务需求为
重。但是我们很不⿎励⽤*号作为查询列表，最好把我们需要查询的
列依次标明。

如何挑选索引

上边我们以idx_name_birthday_phone_number索引为例对索引
的适⽤条件进⾏了详细的唠叨，下边看⼀下我们在建⽴索引时或者编
写查询语句时就应该注意的⼀些事项。

只为⽤于搜索、排序或分组的列创建索引

也就是说，只为出现在WHERE⼦句中的列、连接⼦句中的连接列，或
者出现在ORDER BY或GROUP BY⼦句中的列创建索引。⽽出现在查
询列表中的列就没必要建⽴索引了：

SELECT birthday, country FROM person_name WHERE
name = 'Ashburn';

像查询列表中的birthday、country这两个列就不需要建⽴索引，
我们只需要为出现在WHERE⼦句中的name列创建索引就可以了。

考虑列的基数

列的基数指的是某⼀列中不重复数据的个数，⽐⽅说某个列包含
值2, 5, 8, 2, 5, 8, 2, 5, 8，虽然有9条记录，但该列的基
数却是3。也就是说，在记录⾏数⼀定的情况下，列的基数越⼤，该
列中的值越分散，列的基数越⼩，该列中的值越集中。这个列的基数
指标⾮常重要，直接影响我们是否能有效的利⽤索引。假设某个列的
基数为1，也就是所有记录在该列中的值都⼀样，那为该列建⽴索引
是没有⽤的，因为所有值都⼀样就⽆法排序，⽆法进⾏快速查找了～
⽽且如果某个建⽴了⼆级索引的列的重复值特别多，那么使⽤这个⼆
级索引查出的记录还可能要做回表操作，这样性能损耗就更⼤了。所
以结论就是：最好为那些列的基数⼤的列建⽴索引，为基数太⼩列的
建⽴索引效果可能不好。

索引列的类型尽量⼩

我们在定义表结构的时候要显式的指定列的类型，以整数类型为例，
有TINYINT、MEDIUMINT、INT、BIGINT这么⼏种，它们占⽤的存
储空间依次递增，我们这⾥所说的类型⼤⼩指的就是该类型表示的数
据范围的⼤⼩。能表示的整数范围当然也是依次递增，如果我们想要

对某个整数列建⽴索引的话，在表示的整数范围允许的情况下，尽量
让索引列使⽤较⼩的类型，⽐如我们能使⽤INT就不要使
⽤BIGINT，能使⽤MEDIUMINT就不要使⽤INT～ 这是因为：

数据类型越⼩，在查询时进⾏的⽐较操作越快（这是CPU层次
的东东）

数据类型越⼩，索引占⽤的存储空间就越少，在⼀个数据⻚内
就可以放下更多的记录，从⽽减少磁盘I/O带来的性能损耗，
也就意味着可以把更多的数据⻚缓存在内存中，从⽽加快读写
效率。

这个建议对于表的主键来说更加适⽤，因为不仅是聚簇索引中会存储
主键值，其他所有的⼆级索引的节点处都会存储⼀份记录的主键值，
如果主键适⽤更⼩的数据类型，也就意味着节省更多的存储空间和更
⾼效的I/O。

索引字符串值的前缀

我们知道⼀个字符串其实是由若⼲个字符组成，如果我们在MySQL中
使⽤utf8字符集去存储字符串的话，编码⼀个字符需要占⽤1~3个
字节。假设我们的字符串很⻓，那存储⼀个字符串就需要占⽤很⼤的
存储空间。在我们需要为这个字符串列建⽴索引时，那就意味着在对
应的B+树中有这么两个问题：

B+树索引中的记录需要把该列的完整字符串存储起来，⽽且字
符串越⻓，在索引中占⽤的存储空间越⼤。

如果B+树索引中索引列存储的字符串很⻓，那在做字符串⽐较
时会占⽤更多的时间。

我们前边⼉说过索引列的字符串前缀其实也是排好序的，所以索引的
设计者提出了个⽅案 --- 只对字符串的前⼏个字符进⾏索引也就是
说在⼆级索引的记录中只保留字符串前⼏个字符。这样在查找记录时

虽然不能精确的定位到记录的位置，但是能定位到相应前缀所在的位
置，然后根据前缀相同的记录的主键值回表查询完整的字符串值，再
对⽐就好了。这样只在B+树中存储字符串的前⼏个字符的编码，既
节约空间，⼜减少了字符串的⽐较时间，还⼤概能解决排序的问题，
何乐⽽不为，⽐⽅说我们在建表语句中只对name列的前10个字符进
⾏索引可以这么写：

CREATE TABLE person_info(
 name VARCHAR(100) NOT NULL,
 birthday DATE NOT NULL,
 phone_number CHAR(11) NOT NULL,
 country varchar(100) NOT NULL,
 KEY idx_name_birthday_phone_number (name(10),
birthday, phone_number)
);

name(10)就表示在建⽴的B+树索引中只保留记录的前10个字符的
编码，这种只索引字符串值的前缀的策略是我们⾮常⿎励的，尤其是
在字符串类型能存储的字符⽐较多的时候。

索引列前缀对排序的影响

如果使⽤了索引列前缀，⽐⽅说前边只把name列的前10个字符放到
了⼆级索引中，下边这个查询可能就有点⼉尴尬了：

SELECT * FROM person_info ORDER BY name LIMIT 10;

因为⼆级索引中不包含完整的name列信息，所以⽆法对前⼗个字符
相同，后边的字符不同的记录进⾏排序，也就是使⽤索引列前缀的⽅
式⽆法⽀持使⽤索引排序，只好乖乖的⽤⽂件排序喽。

让索引列在⽐较表达式中单独出现

假设表中有⼀个整数列my_col，我们为这个列建⽴了索引。下边的
两个WHERE⼦句虽然语义是⼀致的，但是在效率上却有差别：

1. WHERE my_col * 2 < 4

2. WHERE my_col < 4/2

第1个WHERE⼦句中my_col列并不是以单独列的形式出现的，⽽是
以my_col * 2这样的表达式的形式出现的，存储引擎会依次遍历所
有的记录，计算这个表达式的值是不是⼩于4，所以这种情况下是使
⽤不到为my_col列建⽴的B+树索引的。⽽第2个WHERE⼦句中
my_col列并是以单独列的形式出现的，这样的情况可以直接使
⽤B+树索引。

所以结论就是：如果索引列在⽐较表达式中不是以单独列的形式出
现，⽽是以某个表达式，或者函数调⽤形式出现的话，是⽤不到索引
的。

主键插⼊顺序

我们知道，对于⼀个使⽤InnoDB存储引擎的表来说，在我们没有显
式的创建索引时，表中的数据实际上都是存储在聚簇索引的叶⼦节点
的。⽽记录⼜是存储在数据⻚中的，数据⻚和记录⼜是按照记录主键
值从⼩到⼤的顺序进⾏排序，所以如果我们插⼊的记录的主键值是依
次增⼤的话，那我们每插满⼀个数据⻚就换到下⼀个数据⻚继续插，
⽽如果我们插⼊的主键值忽⼤忽⼩的话，这就⽐较麻烦了，假设某个
数据⻚存储的记录已经满了，它存储的主键值在1~100之间：

如果此时再插⼊⼀条主键值为9的记录，那它插⼊的位置就如下图：

可这个数据⻚已经满了啊，再插进来咋办呢？我们需要把当前⻚⾯分
裂成两个⻚⾯，把本⻚中的⼀些记录移动到新创建的这个⻚中。⻚⾯
分裂和记录移位意味着什么？意味着：性能损耗！所以如果我们想尽
量避免这样⽆谓的性能损耗，最好让插⼊的记录的主键值依次递增，
这样就不会发⽣这样的性能损耗了。所以我们建议：让主键具
有AUTO_INCREMENT，让存储引擎⾃⼰为表⽣成主键，⽽不是我们
⼿动插⼊ ，⽐⽅说我们可以这样定义person_info表：

CREATE TABLE person_info(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 name VARCHAR(100) NOT NULL,
 birthday DATE NOT NULL,
 phone_number CHAR(11) NOT NULL,
 country varchar(100) NOT NULL,
 PRIMARY KEY (id),
 KEY idx_name_birthday_phone_number (name(10),
birthday, phone_number)
);

我们⾃定义的主键列id拥有AUTO_INCREMENT属性，在插⼊记录时
存储引擎会⾃动为我们填⼊⾃增的主键值。

冗余和重复索引

有时候有的同学有意或者⽆意的就对同⼀个列创建了多个索引，⽐⽅
说这样写建表语句：

CREATE TABLE person_info(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 name VARCHAR(100) NOT NULL,
 birthday DATE NOT NULL,
 phone_number CHAR(11) NOT NULL,
 country varchar(100) NOT NULL,
 PRIMARY KEY (id),
 KEY idx_name_birthday_phone_number (name(10),
birthday, phone_number),
 KEY idx_name (name(10))
);

我们知道，通过idx_name_birthday_phone_number索引就可以
对name列进⾏快速搜索，再创建⼀个专⻔针对name列的索引就算是
⼀个冗余索引，维护这个索引只会增加维护的成本，并不会对搜索有
什么好处。

另⼀种情况，我们可能会对某个列重复建⽴索引，⽐⽅说这样：

CREATE TABLE repeat_index_demo (
 c1 INT PRIMARY KEY,
 c2 INT,
 UNIQUE uidx_c1 (c1),
 INDEX idx_c1 (c1)
);

我们看到，c1既是主键、⼜给它定义为⼀个唯⼀索引，还给它定义
了⼀个普通索引，可是主键本身就会⽣成聚簇索引，所以定义的唯⼀
索引和普通索引是重复的，这种情况要避免。

总结

上边只是我们在创建和使⽤B+树索引的过程中需要注意的⼀些点，
后边我们还会陆续介绍更多的优化⽅法和注意事项，敬请期待。本集
内容总结如下：

1. B+树索引在空间和时间上都有代价，所以没事⼉别瞎建索引。

2. B+树索引适⽤于下边这些情况：

全值匹配
匹配左边的列
匹配范围值
精确匹配某⼀列并范围匹配另外⼀列
⽤于排序
⽤于分组

3. 在使⽤索引时需要注意下边这些事项：

只为⽤于搜索、排序或分组的列创建索引
为列的基数⼤的列创建索引
索引列的类型尽量⼩
可以只对字符串值的前缀建⽴索引
只有索引列在⽐较表达式中单独出现才可以适⽤索引
为了尽可能少的让聚簇索引发⽣⻚⾯分裂和记录移位的情
况，建议让主键拥有AUTO_INCREMENT属性。
定位并删除表中的重复和冗余索引
尽量适⽤覆盖索引进⾏查询，避免回表带来的性能损耗。

