
基础：万丈⾼楼平地起 ——
Redis 基础数据结构
千⾥之⾏，始于⾜下。本节我们的学习⽬标是：快速理解并掌握
Redis 的基础知识。

由于本节内容是 Redis 最简单最容易掌握的知识，如果读者已经很
熟悉 Redis 的基础数据结构，从珍惜⽣命的⻆度出发，你可以略过
本节内容，跳到下⼀节继续阅读。如果你觉得本节的动画有点晃眼，
阅读起来不那么舒服，可以看看作者的另⼀篇⽂章《Redis 数据结构
基础教程》
(https://juejin.im/post/5b53ee7e5188251aaa2d2e16)。

要体验 Redis，我们先从 Redis 安装说起。

Redis 安装

体验 Redis 需要使⽤ Linux 或者 Mac 环境，如果是 Windows 可以
考虑使⽤虚拟机。主要⽅式有四种：

1. 使⽤ Docker 安装。
2. 通过 Github 源码编译。
3. 直接安装 apt-get install(Ubuntu)、yum install(RedHat) 或
者 brew install(Mac)。

4. 如果读者懒于安装操作，也可以使⽤⽹⻚版的 Web Redis
(https://try.redis.io/) 直接体验。

具体操作如下：

Docker ⽅式

https://juejin.im/post/5b53ee7e5188251aaa2d2e16
https://try.redis.io/

拉取 redis 镜像
> docker pull redis
运⾏ redis 容器
> docker run --name myredis -d -p6379:6379 redis
执⾏容器中的 redis-cli，可以直接使⽤命令⾏操作 redis
> docker exec -it myredis redis-cli

Github 源码编译⽅式

下载源码
> git clone --branch 2.8 --depth 1
git@github.com:antirez/redis.git
> cd redis
编译
> make
> cd src
运⾏服务器，daemonize表示在后台运⾏
> ./redis-server --daemonize yes
运⾏命令⾏
> ./redis-cli

直接安装⽅式

mac
> brew install redis
ubuntu
> apt-get install redis
redhat
> yum install redis
运⾏客户端
> redis-cli

Redis 基础数据结构

Redis 有 5 种基础数据结构，分别为：string (字符串)、list (列
表)、set (集合)、hash (哈希) 和 zset (有序集合)。熟练掌握这 5 种
基本数据结构的使⽤是 Redis 知识最基础也最重要的部分，它也是
在 Redis ⾯试题中问到最多的内容。

本节将带领 Redis 初学者快速通关这 5 种基本数据结构。考虑到
Redis 的命令⾮常多，这⾥只选取那些最常⻅的指令进⾏讲解，如果
有遗漏常⻅指令，读者可以在评论去留⾔。

string (字符串)

字符串 string 是 Redis 最简单的数据结构。Redis 所有的数据结构
都是以唯⼀的 key 字符串作为名称，然后通过这个唯⼀ key 值来获
取相应的 value 数据。不同类型的数据结构的差异就在于 value 的
结构不⼀样。

字符串结构使⽤⾮常⼴泛，⼀个常⻅的⽤途就是缓存⽤户信息。我们
将⽤户信息结构体使⽤ JSON 序列化成字符串，然后将序列化后的字
符串塞进 Redis 来缓存。同样，取⽤户信息会经过⼀次反序列化的
过程。

Redis 的字符串是动态字符串，是可以修改的字符串，内部结构实现
上类似于 Java 的 ArrayList，采⽤预分配冗余空间的⽅式来减少内
存的频繁分配，如图中所示，内部为当前字符串实际分配的空间
capacity ⼀般要⾼于实际字符串⻓度 len。当字符串⻓度⼩于 1M
时，扩容都是加倍现有的空间，如果超过 1M，扩容时⼀次只会多扩
1M 的空间。需要注意的是字符串最⼤⻓度为 512M。

键值对

> set name codehole
OK
> get name
"codehole"
> exists name
(integer) 1
> del name
(integer) 1
> get name
(nil)

批量键值对

可以批量对多个字符串进⾏读写，节省⽹络耗时开销。

> set name1 codehole
OK
> set name2 holycoder
OK
> mget name1 name2 name3 # 返回⼀个列表
1) "codehole"
2) "holycoder"
3) (nil)
> mset name1 boy name2 girl name3 unknown
> mget name1 name2 name3
1) "boy"
2) "girl"
3) "unknown"

过期和 set 命令扩展

可以对 key 设置过期时间，到点⾃动删除，这个功能常⽤来控制缓
存的失效时间。不过这个「⾃动删除」的机制是⽐较复杂的，如果你
感兴趣，可以继续深⼊阅读第 26 节《朝⽣暮死——过期策略》
(https://juejin.im/book/5afc2e5f6fb9a07a9b362527/section/5b4c42405188251b3950d251)

https://juejin.im/book/5afc2e5f6fb9a07a9b362527/section/5b4c42405188251b3950d251

> set name codehole
> get name
"codehole"
> expire name 5 # 5s 后过期
... # wait for 5s
> get name
(nil)

> setex name 5 codehole # 5s 后过期，等价于
set+expire
> get name
"codehole"
... # wait for 5s
> get name
(nil)

> setnx name codehole # 如果 name 不存在就执⾏ set
创建
(integer) 1
> get name
"codehole"
> setnx name holycoder
(integer) 0 # 因为 name 已经存在，所以 set 创建不成功
> get name
"codehole" # 没有改变

计数

如果 value 值是⼀个整数，还可以对它进⾏⾃增操作。⾃增是有范
围的，它的范围是 signed long 的最⼤最⼩值，超过了这个值，
Redis 会报错。

> set age 30
OK
> incr age
(integer) 31
> incrby age 5
(integer) 36
> incrby age -5
(integer) 31
> set codehole 9223372036854775807 # Long.Max
OK
> incr codehole
(error) ERR increment or decrement would overflow

字符串是由多个字节组成，每个字节⼜是由 8 个 bit 组成，如此便
可以将⼀个字符串看成很多 bit 的组合，这便是 bitmap「位图」数
据结构，位图的具体使⽤会放到后⾯的章节来讲。

关于字符串的内部结构实现，请阅读第 32 节《极度深寒 —— 探索
「字符串」内部》
(https://juejin.im/book/5afc2e5f6fb9a07a9b362527/section/5b5af9d96fb9a04f83465ada)

list (列表)

Redis 的列表相当于 Java 语⾔⾥⾯的 LinkedList，注意它是链表⽽
不是数组。这意味着 list 的插⼊和删除操作⾮常快，时间复杂度为
O(1)，但是索引定位很慢，时间复杂度为 O(n)，这点让⼈⾮常意
外。

当列表弹出了最后⼀个元素之后，该数据结构⾃动被删除，内存被回
收。

https://juejin.im/book/5afc2e5f6fb9a07a9b362527/section/5b5af9d96fb9a04f83465ada

Redis 的列表结构常⽤来做异步队列使⽤。将需要延后处理的任务结
构体序列化成字符串塞进 Redis 的列表，另⼀个线程从这个列表中
轮询数据进⾏处理。

右边进左边出：队列

> rpush books python java golang
(integer) 3
> llen books
(integer) 3
> lpop books
"python"
> lpop books
"java"
> lpop books
"golang"
> lpop books
(nil)

右边进右边出：栈

> rpush books python java golang
(integer) 3
> rpop books
"golang"
> rpop books
"java"
> rpop books
"python"
> rpop books
(nil)

慢操作

lindex 相当于 Java 链表的get(int index)⽅法，它需要对链表
进⾏遍历，性能随着参数index增⼤⽽变差。

ltrim 和字⾯上的含义不太⼀样，个⼈觉得它叫 lretain(保留) 更合适
⼀些，因为 ltrim 跟的两个参数start_index和end_index定义了
⼀个区间，在这个区间内的值，ltrim 要保留，区间之外统统砍掉。
我们可以通过ltrim来实现⼀个定⻓的链表，这⼀点⾮常有⽤。

index 可以为负数，index=-1表示倒数第⼀个元素，同
样index=-2表示倒数第⼆个元素。

> rpush books python java golang
(integer) 3
> lindex books 1 # O(n) 慎⽤
"java"
> lrange books 0 -1 # 获取所有元素，O(n) 慎⽤
1) "python"
2) "java"
3) "golang"
> ltrim books 1 -1 # O(n) 慎⽤
OK
> lrange books 0 -1
1) "java"
2) "golang"
> ltrim books 1 0 # 这其实是清空了整个列表，因为区间范
围⻓度为负
OK
> llen books
(integer) 0

快速列表

如果再深⼊⼀点，你会发现 Redis 底层存储的还不是⼀个简单的
linkedlist，⽽是称之为快速链表 quicklist 的⼀个结构。

⾸先在列表元素较少的情况下会使⽤⼀块连续的内存存储，这个结构
是 ziplist，也即是压缩列表。它将所有的元素紧挨着⼀起存储，
分配的是⼀块连续的内存。当数据量⽐较多的时候才会改成
quicklist。因为普通的链表需要的附加指针空间太⼤，会⽐较浪
费空间，⽽且会加重内存的碎⽚化。⽐如这个列表⾥存的只是 int
类型的数据，结构上还需要两个额外的指针 prev 和 next 。所以

Redis 将链表和 ziplist 结合起来组成了 quicklist。也就是将
多个 ziplist 使⽤双向指针串起来使⽤。这样既满⾜了快速的插⼊
删除性能，⼜不会出现太⼤的空间冗余。

关于列表的内部结构实现，请阅读第 34 节《极度深寒 —— 探索
「压缩列表」内部》
(https://juejin.im/book/5afc2e5f6fb9a07a9b362527/section/5b5c95226fb9a04fa42fc3f6)
和第 35 节《极度深寒 —— 探索「快速列表」内部》
(https://juejin.im/book/5afc2e5f6fb9a07a9b362527/section/5b5c963be51d45199154e82e)

hash (字典)

Redis 的字典相当于 Java 语⾔⾥⾯的 HashMap，它是⽆序字典。
内部实现结构上同 Java 的 HashMap 也是⼀致的，同样的数组 +
链表⼆维结构。第⼀维 hash 的数组位置碰撞时，就会将碰撞的元素
使⽤链表串接起来。

不同的是，Redis 的字典的值只能是字符串，另外它们 rehash 的⽅
式不⼀样，因为 Java 的 HashMap 在字典很⼤时，rehash 是个耗
时的操作，需要⼀次性全部 rehash。Redis 为了⾼性能，不能堵塞
服务，所以采⽤了渐进式 rehash 策略。

https://juejin.im/book/5afc2e5f6fb9a07a9b362527/section/5b5c95226fb9a04fa42fc3f6
https://juejin.im/book/5afc2e5f6fb9a07a9b362527/section/5b5c963be51d45199154e82e

渐进式 rehash 会在 rehash 的同时，保留新旧两个 hash 结构，查
询时会同时查询两个 hash 结构，然后在后续的定时任务中以及
hash 操作指令中，循序渐进地将旧 hash 的内容⼀点点迁移到新的
hash 结构中。当搬迁完成了，就会使⽤新的hash结构取⽽代之。

当 hash 移除了最后⼀个元素之后，该数据结构⾃动被删除，内存被
回收。

hash 结构也可以⽤来存储⽤户信息，不同于字符串⼀次性需要全部
序列化整个对象，hash 可以对⽤户结构中的每个字段单独存储。这
样当我们需要获取⽤户信息时可以进⾏部分获取。⽽以整个字符串的
形式去保存⽤户信息的话就只能⼀次性全部读取，这样就会⽐较浪费
⽹络流量。

hash 也有缺点，hash 结构的存储消耗要⾼于单个字符串，到底该
使⽤ hash 还是字符串，需要根据实际情况再三权衡。

> hset books java "think in java" # 命令⾏的字符串
如果包含空格，要⽤引号括起来
(integer) 1
> hset books golang "concurrency in go"
(integer) 1
> hset books python "python cookbook"
(integer) 1
> hgetall books # entries()，key 和 value 间隔出现
1) "java"
2) "think in java"
3) "golang"
4) "concurrency in go"
5) "python"
6) "python cookbook"
> hlen books
(integer) 3
> hget books java
"think in java"
> hset books golang "learning go programming" #
因为是更新操作，所以返回 0
(integer) 0
> hget books golang
"learning go programming"
> hmset books java "effective java" python
"learning python" golang "modern golang
programming" # 批量 set
OK

同字符串对象⼀样，hash 结构中的单个⼦ key 也可以进⾏计数，它
对应的指令是 hincrby，和 incr 使⽤基本⼀样。

⽼钱⼜⽼了⼀岁
> hincrby user-laoqian age 1
(integer) 30

关于字典的内部结构实现，请阅读第 33 节《极度深寒 —— 探索
「字典」内部》
(https://juejin.im/book/5afc2e5f6fb9a07a9b362527/section/5b5bdbbd5188251ac22b5bf7)

set (集合)

Redis 的集合相当于 Java 语⾔⾥⾯的 HashSet，它内部的键值对是
⽆序的唯⼀的。它的内部实现相当于⼀个特殊的字典，字典中所有的
value 都是⼀个值NULL。

当集合中最后⼀个元素移除之后，数据结构⾃动删除，内存被回收。

set 结构可以⽤来存储活动中奖的⽤户 ID，因为有去重功能，可以
保证同⼀个⽤户不会中奖两次。

https://juejin.im/book/5afc2e5f6fb9a07a9b362527/section/5b5bdbbd5188251ac22b5bf7

> sadd books python
(integer) 1
> sadd books python # 重复
(integer) 0
> sadd books java golang
(integer) 2
> smembers books # 注意顺序，和插⼊的并不⼀致，因为
set 是⽆序的
1) "java"
2) "python"
3) "golang"
> sismember books java # 查询某个 value 是否存在，相
当于 contains(o)
(integer) 1
> sismember books rust
(integer) 0
> scard books # 获取⻓度相当于 count()
(integer) 3
> spop books # 弹出⼀个
"java"

zset (有序集合)
zset 可能是 Redis 提供的最为特⾊的数据结构，它也是在⾯试中⾯
试官最爱问的数据结构。它类似于 Java 的 SortedSet 和 HashMap
的结合体，⼀⽅⾯它是⼀个 set，保证了内部 value 的唯⼀性，另⼀
⽅⾯它可以给每个 value 赋予⼀个 score，代表这个 value 的排序
权重。它的内部实现⽤的是⼀种叫做「跳跃列表」的数据结构。

zset 中最后⼀个 value 被移除后，数据结构⾃动删除，内存被回
收。

zset 可以⽤来存粉丝列表，value 值是粉丝的⽤户 ID，score 是关
注时间。我们可以对粉丝列表按关注时间进⾏排序。

zset 还可以⽤来存储学⽣的成绩，value 值是学⽣的 ID，score 是
他的考试成绩。我们可以对成绩按分数进⾏排序就可以得到他的名
次。

> zadd books 9.0 "think in java"
(integer) 1
> zadd books 8.9 "java concurrency"
(integer) 1
> zadd books 8.6 "java cookbook"
(integer) 1
> zrange books 0 -1 # 按 score 排序列出，参数区间为
排名范围
1) "java cookbook"
2) "java concurrency"
3) "think in java"
> zrevrange books 0 -1 # 按 score 逆序列出，参数区间
为排名范围
1) "think in java"
2) "java concurrency"
3) "java cookbook"
> zcard books # 相当于 count()
(integer) 3

> zscore books "java concurrency" # 获取指定 value
的 score
"8.9000000000000004" # 内部 score 使⽤ double 类型
进⾏存储，所以存在⼩数点精度问题
> zrank books "java concurrency" # 排名
(integer) 1
> zrangebyscore books 0 8.91 # 根据分值区间遍历
zset
1) "java cookbook"
2) "java concurrency"
> zrangebyscore books -inf 8.91 withscores # 根据
分值区间 (-∞, 8.91] 遍历 zset，同时返回分值。inf 代表
infinite，⽆穷⼤的意思。
1) "java cookbook"
2) "8.5999999999999996"
3) "java concurrency"
4) "8.9000000000000004"
> zrem books "java concurrency" # 删除 value
(integer) 1
> zrange books 0 -1
1) "java cookbook"
2) "think in java"

跳跃列表

zset 内部的排序功能是通过「跳跃列表」数据结构来实现的，它的
结构⾮常特殊，也⽐较复杂。

因为 zset 要⽀持随机的插⼊和删除，所以它不好使⽤数组来表示。
我们先看⼀个普通的链表结构。

我们需要这个链表按照 score 值进⾏排序。这意味着当有新元素需
要插⼊时，要定位到特定位置的插⼊点，这样才可以继续保证链表是
有序的。通常我们会通过⼆分查找来找到插⼊点，但是⼆分查找的对
象必须是数组，只有数组才可以⽀持快速位置定位，链表做不到，那
该怎么办？

想想⼀个创业公司，刚开始只有⼏个⼈，团队成员之间⼈⼈平等，都
是联合创始⼈。随着公司的成⻓，⼈数渐渐变多，团队沟通成本随之
增加。这时候就会引⼊组⻓制，对团队进⾏划分。每个团队会有⼀个
组⻓。开会的时候分团队进⾏，多个组⻓之间还会有⾃⼰的会议安
排。公司规模进⼀步扩展，需要再增加⼀个层级 —— 部⻔，每个部
⻔会从组⻓列表中推选出⼀个代表来作为部⻓。部⻓们之间还会有⾃
⼰的⾼层会议安排。

跳跃列表就是类似于这种层级制，最下⾯⼀层所有的元素都会串起
来。然后每隔⼏个元素挑选出⼀个代表来，再将这⼏个代表使⽤另外
⼀级指针串起来。然后在这些代表⾥再挑出⼆级代表，再串起来。最
终就形成了⾦字塔结构。

想想你⽼家在世界地图中的位置：亚洲-->中国->安徽省->安庆
市->枞阳县->汤沟镇->⽥间村->xxxx号，也是这样⼀个类似的结
构。

「跳跃列表」之所以「跳跃」，是因为内部的元素可能「身兼数
职」，⽐如上图中间的这个元素，同时处于 L0、L1 和 L2 层，可以
快速在不同层次之间进⾏「跳跃」。

定位插⼊点时，先在顶层进⾏定位，然后下潜到下⼀级定位，⼀直下
潜到最底层找到合适的位置，将新元素插进去。你也许会问，那新插
⼊的元素如何才有机会「身兼数职」呢？

跳跃列表采取⼀个随机策略来决定新元素可以兼职到第⼏层。

⾸先 L0 层肯定是 100% 了，L1 层只有 50% 的概率，L2 层只有
25% 的概率，L3 层只有 12.5% 的概率，⼀直随机到最顶层 L31
层。绝⼤多数元素都过不了⼏层，只有极少数元素可以深⼊到顶层。
列表中的元素越多，能够深⼊的层次就越深，能进⼊到顶层的概率就
会越⼤。

这还挺公平的，能不能进⼊中央不是靠拼爹，⽽是看运⽓。

关于跳跃列表的内部结构实现，请阅读第 36 节《极度深寒 —— 探
索「跳跃列表」内部结构》
(https://juejin.im/book/5afc2e5f6fb9a07a9b362527/section/5b5ac63d5188256255299d9c)

容器型数据结构的通⽤规则

list/set/hash/zset 这四种数据结构是容器型数据结构，它们共享
下⾯两条通⽤规则：

1. create if not exists

如果容器不存在，那就创建⼀个，再进⾏操作。⽐如 rpush 操
作刚开始是没有列表的，Redis 就会⾃动创建⼀个，然后再
rpush 进去新元素。

2. drop if no elements

如果容器⾥元素没有了，那么⽴即删除元素，释放内存。这意
味着 lpop 操作到最后⼀个元素，列表就消失了。

https://juejin.im/book/5afc2e5f6fb9a07a9b362527/section/5b5ac63d5188256255299d9c

过期时间

Redis 所有的数据结构都可以设置过期时间，时间到了，Redis 会⾃
动删除相应的对象。需要注意的是过期是以对象为单位，⽐如⼀个
hash 结构的过期是整个 hash 对象的过期，⽽不是其中的某个⼦
key。

还有⼀个需要特别注意的地⽅是如果⼀个字符串已经设置了过期时
间，然后你调⽤了 set ⽅法修改了它，它的过期时间会消失。

127.0.0.1:6379> set codehole yoyo
OK
127.0.0.1:6379> expire codehole 600
(integer) 1
127.0.0.1:6379> ttl codehole
(integer) 597
127.0.0.1:6379> set codehole yoyo
OK
127.0.0.1:6379> ttl codehole
(integer) -1

思考 & 作业

1. 如果你是 Java ⽤户，请定义⼀个⽤户信息结构体，然后使⽤
fastjson 对⽤户信息对象进⾏序列化和反序列化，再使⽤
Jedis 对 Redis 缓存的⽤户信息进⾏存和取。

2. 如果你是 Python ⽤户，使⽤内置的 JSON 包就可以了。然后
通过 redis-py 来对 Redis 缓存的⽤户信息进⾏存和取。

3. 想想如果要改成⽤ hash 结构来缓存⽤户信息，你该如何封装
⽐较合适？

4. 想想平时还有哪些指令你平时⽤过⽽本⼩节没有提到的？

5. 回想⼀下掘⾦社区的功能模块中分别会使⽤到哪些数据结构？

扩展阅读

《存结构体信息到底该使⽤ hash 还是 string？》
(https://stackoverflow.com/questions/16375188/redis-
strings-vs-redis-hashes-to-represent-json-efficiency)

https://stackoverflow.com/questions/16375188/redis-strings-vs-redis-hashes-to-represent-json-efficiency

