
原理 1：鞭辟⼊⾥ —— 线程 IO
模型

Redis 是个单线程程序！这点必须铭记。

也许你会怀疑⾼并发的 Redis 中间件怎么可能是单线程。很抱歉，
它就是单线程，你的怀疑暴露了你基础知识的不⾜。莫要瞧不起单线
程，除了 Redis 之外，Node.js 也是单线程，Nginx 也是单线程，
但是它们都是服务器⾼性能的典范。

Redis 单线程为什么还能这么快？

因为它所有的数据都在内存中，所有的运算都是内存级别的运算。正
因为 Redis 是单线程，所以要⼩⼼使⽤ Redis 指令，对于那些时间
复杂度为 O(n) 级别的指令，⼀定要谨慎使⽤，⼀不⼩⼼就可能会导
致 Redis 卡顿。

Redis 单线程如何处理那么多的并发客户端连接？

这个问题，有很多中⾼级程序员都⽆法回答，因为他们没听过多路复
⽤这个词汇，不知道 select 系列的事件轮询 API，没⽤过⾮阻塞
IO。

⾮阻塞 IO

当我们调⽤套接字的读写⽅法，默认它们是阻塞的，⽐如read⽅法
要传递进去⼀个参数n，表示最多读取这么多字节后再返回，如果⼀
个字节都没有，那么线程就会卡在那⾥，直到新的数据到来或者连接
关闭了，read⽅法才可以返回，线程才能继续处理。⽽write⽅法
⼀般来说不会阻塞，除⾮内核为套接字分配的写缓冲区已经满
了，write⽅法就会阻塞，直到缓存区中有空闲空间挪出来了。

⾮阻塞 IO 在套接字对象上提供了⼀个选项Non_Blocking，当这个
选项打开时，读写⽅法不会阻塞，⽽是能读多少读多少，能写多少写
多少。能读多少取决于内核为套接字分配的读缓冲区内部的数据字节
数，能写多少取决于内核为套接字分配的写缓冲区的空闲空间字节
数。读⽅法和写⽅法都会通过返回值来告知程序实际读写了多少字
节。

有了⾮阻塞 IO 意味着线程在读写 IO 时可以不必再阻塞了，读写可
以瞬间完成然后线程可以继续⼲别的事了。

事件轮询 (多路复⽤)

⾮阻塞 IO 有个问题，那就是线程要读数据，结果读了⼀部分就返回
了，线程如何知道何时才应该继续读。也就是当数据到来时，线程如
何得到通知。写也是⼀样，如果缓冲区满了，写不完，剩下的数据何
时才应该继续写，线程也应该得到通知。

事件轮询 API 就是⽤来解决这个问题的，最简单的事件轮询 API
是select函数，它是操作系统提供给⽤户程序的 API。输⼊是读写
描述符列表read_fds & write_fds，输出是与之对应的可读可写
事件。同时还提供了⼀个timeout参数，如果没有任何事件到来，
那么就最多等待timeout时间，线程处于阻塞状态。⼀旦期间有任
何事件到来，就可以⽴即返回。时间过了之后还是没有任何事件到
来，也会⽴即返回。拿到事件后，线程就可以继续挨个处理相应的事
件。处理完了继续过来轮询。于是线程就进⼊了⼀个死循环，我们把
这个死循环称为事件循环，⼀个循环为⼀个周期。

每个客户端套接字socket都有对应的读写⽂件描述符。

read_events, write_events = select(read_fds,
write_fds, timeout)
for event in read_events:
 handle_read(event.fd)
for event in write_events:
 handle_write(event.fd)
handle_others() # 处理其它事情，如定时任务等

因为我们通过select系统调⽤同时处理多个通道描述符的读写事
件，因此我们将这类系统调⽤称为多路复⽤ API。现代操作系统的多
路复⽤ API 已经不再使⽤select系统调⽤，⽽改⽤epoll(linux)
和kqueue(freebsd & macosx)，因为 select 系统调⽤的性能在
描述符特别多时性能会⾮常差。它们使⽤起来可能在形式上略有差
异，但是本质上都是差不多的，都可以使⽤上⾯的伪代码逻辑进⾏理
解。

服务器套接字serversocket对象的读操作是指调⽤accept接受客
户端新连接。何时有新连接到来，也是通过select系统调⽤的读事
件来得到通知的。

事件轮询 API 就是 Java 语⾔⾥⾯的 NIO 技术

Java 的 NIO 并不是 Java 特有的技术，其它计算机语⾔都有这个技
术，只不过换了⼀个词汇，不叫 NIO ⽽已。

指令队列

Redis 会将每个客户端套接字都关联⼀个指令队列。客户端的指令通
过队列来排队进⾏顺序处理，先到先服务。

响应队列

Redis 同样也会为每个客户端套接字关联⼀个响应队列。Redis 服务
器通过响应队列来将指令的返回结果回复给客户端。
如果队列为空，那么意味着连接暂时处于空闲状态，不需要去获取写
事件，也就是可以将当前的客户端描述符从write_fds⾥⾯移出
来。等到队列有数据了，再将描述符放进去。避免select系统调⽤
⽴即返回写事件，结果发现没什么数据可以写。出这种情况的线程会
飙⾼ CPU。

定时任务

服务器处理要响应 IO 事件外，还要处理其它事情。⽐如定时任务就
是⾮常重要的⼀件事。如果线程阻塞在 select 系统调⽤上，定时任
务将⽆法得到准时调度。那 Redis 是如何解决这个问题的呢？

Redis 的定时任务会记录在⼀个称为最⼩堆的数据结构中。这个堆
中，最快要执⾏的任务排在堆的最上⽅。在每个循环周期，Redis 都
会将最⼩堆⾥⾯已经到点的任务⽴即进⾏处理。处理完毕后，将最快
要执⾏的任务还需要的时间记录下来，这个时间就是select系统调
⽤的timeout参数。因为 Redis 知道未来timeout时间内，没有其
它定时任务需要处理，所以可以安⼼睡眠timeout的时间。

Nginx 和 Node 的事件处理原理和 Redis 也是类似的

扩展阅读

请阅读⽼钱的另⼀篇⽕爆的⽂章《跟着动画来学习TCP三次握⼿和四
次挥⼿》
(https://juejin.im/post/5b29d2c4e51d4558b80b1d8c)

https://juejin.im/post/5b29d2c4e51d4558b80b1d8c

