
原理 4：雷厉⻛⾏ —— 管道
⼤多数同学⼀直以来对 Redis 管道有⼀个误解，他们以为这是
Redis 服务器提供的⼀种特别的技术，有了这种技术就可以加速
Redis 的存取效率。但是实际上 Redis 管道 (Pipeline) 本身并不是
Redis 服务器直接提供的技术，这个技术本质上是由客户端提供的，
跟服务器没有什么直接的关系。下⾯我们对这块做⼀个深⼊探究。

Redis 的消息交互

当我们使⽤客户端对 Redis 进⾏⼀次操作时，如下图所示，客户端
将请求传送给服务器，服务器处理完毕后，再将响应回复给客户端。
这要花费⼀个⽹络数据包来回的时间。

如果连续执⾏多条指令，那就会花费多个⽹络数据包来回的时间。如
下图所示。



回到客户端代码层⾯，客户端是经历了写-读-写-读四个操作才完整
地执⾏了两条指令。

现在如果我们调整读写顺序，改成写—写-读-读，这两个指令同样
可以正常完成。

两个连续的写操作和两个连续的读操作总共只会花费⼀次⽹络来回，
就好⽐连续的 write 操作合并了，连续的 read 操作也合并了⼀样。

这便是管道操作的本质，服务器根本没有任何区别对待，还是收到⼀
条消息，执⾏⼀条消息，回复⼀条消息的正常的流程。客户端通过对
管道中的指令列表改变读写顺序就可以⼤幅节省 IO 时间。管道中指
令越多，效果越好。

管道压⼒测试

接下来我们实践⼀下管道的⼒量。



Redis ⾃带了⼀个压⼒测试⼯具redis-benchmark，使⽤这个⼯具
就可以进⾏管道测试。

⾸先我们对⼀个普通的 set 指令进⾏压测，QPS ⼤约 5w/s。

> redis-benchmark -t set -q
SET: 51975.05 requests per second

我们加⼊管道选项-P参数，它表示单个管道内并⾏的请求数量，看
下⾯P=2，QPS 达到了 9w/s。

> redis-benchmark -t set -P 2 -q
SET: 91240.88 requests per second

再看看P=3，QPS 达到了 10w/s。

SET: 102354.15 requests per second

但如果再继续提升 P 参数，发现 QPS 已经上不去了。这是为什么
呢？

因为这⾥ CPU 处理能⼒已经达到了瓶颈，Redis 的单线程 CPU 已
经飙到了 100%，所以⽆法再继续提升了。

深⼊理解管道本质

接下来我们深⼊分析⼀个请求交互的流程，真实的情况是它很复杂，
因为要经过⽹络协议栈，这个就得深⼊内核了。

上图就是⼀个完整的请求交互流程图。我⽤⽂字来仔细描述⼀遍：

1. 客户端进程调⽤write将消息写到操作系统内核为套接字分配
的发送缓冲send buffer。

2. 客户端操作系统内核将发送缓冲的内容发送到⽹卡，⽹卡硬件



将数据通过「⽹际路由」送到服务器的⽹卡。
3. 服务器操作系统内核将⽹卡的数据放到内核为套接字分配的接
收缓冲recv buffer。

4. 服务器进程调⽤read从接收缓冲中取出消息进⾏处理。
5. 服务器进程调⽤write将响应消息写到内核为套接字分配的发
送缓冲send buffer。

6. 服务器操作系统内核将发送缓冲的内容发送到⽹卡，⽹卡硬件
将数据通过「⽹际路由」送到客户端的⽹卡。

7. 客户端操作系统内核将⽹卡的数据放到内核为套接字分配的接
收缓冲recv buffer。

8. 客户端进程调⽤read从接收缓冲中取出消息返回给上层业务逻
辑进⾏处理。

9. 结束。

其中步骤 5~8 和 1~4 是⼀样的，只不过⽅向是反过来的，⼀个是请
求，⼀个是响应。

我们开始以为 write 操作是要等到对⽅收到消息才会返回，但实际
上不是这样的。write 操作只负责将数据写到本地操作系统内核的
发送缓冲然后就返回了。剩下的事交给操作系统内核异步将数据送到
⽬标机器。但是如果发送缓冲满了，那么就需要等待缓冲空出空闲空
间来，这个就是写操作 IO 操作的真正耗时。

我们开始以为 read 操作是从⽬标机器拉取数据，但实际上不是这样
的。read 操作只负责将数据从本地操作系统内核的接收缓冲中取出
来就了事了。但是如果缓冲是空的，那么就需要等待数据到来，这个
就是读操作 IO 操作的真正耗时。

所以对于value = redis.get(key)这样⼀个简单的请求来
说，write操作⼏乎没有耗时，直接写到发送缓冲就返回，⽽read
就会⽐较耗时了，因为它要等待消息经过⽹络路由到⽬标机器处理后
的响应消息,再回送到当前的内核读缓冲才可以返回。这才是⼀个⽹
络来回的真正开销。



⽽对于管道来说，连续的write操作根本就没有耗时，之后第⼀
个read操作会等待⼀个⽹络的来回开销，然后所有的响应消息就都
已经回送到内核的读缓冲了，后续的 read 操作直接就可以从缓冲拿
到结果，瞬间就返回了。

⼩结

这就是管道的本质了，它并不是服务器的什么特性，⽽是客户端通过
改变了读写的顺序带来的性能的巨⼤提升。


