
原理 6：⼩道消息 —— PubSub
前⾯我们讲了 Redis 消息队列的使⽤⽅法，但是没有提到 Redis 消
息队列的不⾜之处，那就是它不⽀持消息的多播机制。

消息多播

消息多播允许⽣产者⽣产⼀次消息，中间件负责将消息复制到多个消
息队列，每个消息队列由相应的消费组进⾏消费。它是分布式系统常
⽤的⼀种解耦⽅式，⽤于将多个消费组的逻辑进⾏拆分。⽀持了消息
多播，多个消费组的逻辑就可以放到不同的⼦系统中。

如果是普通的消息队列，就得将多个不同的消费组逻辑串接起来放在
⼀个⼦系统中，进⾏连续消费。

PubSub

为了⽀持消息多播，Redis 不能再依赖于那 5 种基本数据类型了。
它单独使⽤了⼀个模块来⽀持消息多播，这个模块的名字叫着
PubSub，也就是 PublisherSubscriber，发布者订阅者模型。我们
使⽤ Python 语⾔来演示⼀下 PubSub 如何使⽤。

-*- coding: utf-8 -*-
import time
import redis

client = redis.StrictRedis()
p = client.pubsub()
p.subscribe("codehole")
time.sleep(1)
print p.get_message()
client.publish("codehole", "java comes")
time.sleep(1)
print p.get_message()
client.publish("codehole", "python comes")
time.sleep(1)
print p.get_message()
print p.get_message()

{'pattern': None, 'type': 'subscribe', 'channel':
'codehole', 'data': 1L}
{'pattern': None, 'type': 'message', 'channel':
'codehole', 'data': 'java comes'}
{'pattern': None, 'type': 'message', 'channel':
'codehole', 'data': 'python comes'}
None

客户端发起订阅命令后，Redis 会⽴即给予⼀个反馈消息通知订阅成
功。因为有⽹络传输延迟，在 subscribe 命令发出后，需要休眠⼀
会，再通过 get_message 才能拿到反馈消息。客户端接下来执⾏
发布命令，发布了⼀条消息。同样因为⽹络延迟，在 publish 命令
发出后，需要休眠⼀会，再通过 get_message 才能拿到发布的消
息。如果当前没有消息，get_message 会返回空，告知当前没有
消息，所以它不是阻塞的。

Redis PubSub 的⽣产者和消费者是不同的连接，也就是上⾯这个例
⼦实际上使⽤了两个 Redis 的连接。这是必须的，因为 Redis 不允
许连接在 subscribe 等待消息时还要进⾏其它的操作。

在⽣产环境中，我们很少将⽣产者和消费者放在同⼀个线程⾥。如果
它们真要在同⼀个线程⾥，何必通过中间件来流转，直接使⽤函数调
⽤就⾏。所以我们应该将⽣产者和消费者分离，接下来我们看看分离
后的代码要怎么写。

消费者

-*- coding: utf-8 -*-
import time
import redis

client = redis.StrictRedis()
p = client.pubsub()
p.subscribe("codehole")
while True:
 msg = p.get_message()
 if not msg:
 time.sleep(1)
 continue
 print msg

⽣产者

-*- coding: utf-8 -*-
import redis

client = redis.StrictRedis()
client.publish("codehole", "python comes")
client.publish("codehole", "java comes")
client.publish("codehole", "golang comes")

必须先启动消费者，然后再执⾏⽣产者，消费者我们可以启动多个，
pubsub 会保证它们收到的是相同的消息序列。

{'pattern': None, 'type': 'subscribe', 'channel':
'codehole', 'data': 1L}
{'pattern': None, 'type': 'message', 'channel':
'codehole', 'data': 'python comes'}
{'pattern': None, 'type': 'message', 'channel':
'codehole', 'data': 'java comes'}
{'pattern': None, 'type': 'message', 'channel':
'codehole', 'data': 'golang comes'}

我们从消费者的控制台窗⼝可以看到上⾯的输出，每个消费者窗⼝都
是同样的输出。第⼀⾏是订阅成功消息，它很快就会输出，后⾯的三
⾏会在⽣产者进程执⾏的时候⽴即输出。
上⾯的消费者是通过轮询 get_message 来收取消息的，如果收取
不到就休眠 1s。这让我们想起了第 3 节的消息队列模型，我们使⽤
blpop 来代替休眠来提⾼消息处理的及时性。

PubSub 的消费者如果使⽤休眠的⽅式来轮询消息，也会遭遇消息处
理不及时的问题。不过我们可以使⽤ listen 来阻塞监听消息来进⾏
处理，这点同 blpop 原理是⼀样的。下⾯我们改造⼀下消费者

阻塞消费者

-*- coding: utf-8 -*-
import time
import redis

client = redis.StrictRedis()
p = client.pubsub()
p.subscribe("codehole")
for msg in p.listen():
 print msg

代码简短了很多，不需要再休眠了，消息处理也及时了。

模式订阅

上⾯提到的订阅模式是基于名称订阅的，消费者订阅⼀个主题是必须
明确指定主题的名称。如果我们想要订阅多个主题，那就 subscribe
多个名称。

> subscribe codehole.image codehole.text
codehole.blog # 同时订阅三个主题，会有三条订阅成功反馈
信息
1) "subscribe"
2) "codehole.image"
3) (integer) 1
1) "subscribe"
2) "codehole.text"
3) (integer) 2
1) "subscribe"
2) "codehole.blog"
3) (integer) 3

这样⽣产者向这三个主题发布的消息，这个消费者都可以接收到。

> publish codehole.image
https://www.google.com/dudo.png
(integer) 1
> publish codehole.text " 你好，欢迎加⼊码洞 "
(integer) 1
> publish codehole.blog '{"content": "hello,
everyone", "title": "welcome"}'
(integer) 1

如果现在要增加⼀个主题codehole.group，客户端必须也跟着增
加⼀个订阅指令才可以收到新开主题的消息推送。

为了简化订阅的繁琐，redis 提供了模式订阅功能Pattern
Subscribe，这样就可以⼀次订阅多个主题，即使⽣产者新增加了
同模式的主题，消费者也可以⽴即收到消息

> psubscribe codehole.* # ⽤模式匹配⼀次订阅多个主
题，主题以 codehole. 字符开头的消息都可以收到
1) "psubscribe"
2) "codehole.*"
3) (integer) 1

消息结构

前⾯的消费者消息输出时都是下⾯的这样⼀个字典形式

{'pattern': None, 'type': 'subscribe', 'channel':
'codehole', 'data': 1L}
{'pattern': None, 'type': 'message', 'channel':
'codehole', 'data': 'python comes'}
{'pattern': None, 'type': 'message', 'channel':
'codehole', 'data': 'java comes'}
{'pattern': None, 'type': 'message', 'channel':
'codehole', 'data': 'golang comes'}

那这⼏个字段是什么含义呢？

data
这个毫⽆疑问就是消息的内容，⼀个字符串。

channel
这个也很明显，它表示当前订阅的主题名称。

type
它表示消息的类型，如果是⼀个普通的消息，那么类型就是
message，如果是控制消息，⽐如订阅指令的反馈，它的类型就是

subscribe，如果是模式订阅的反馈，它的类型就是 psubscribe，
还有取消订阅指令的反馈 unsubscribe 和 punsubscribe。

pattern
它表示当前消息是使⽤哪种模式订阅到的，如果是通过 subscribe
指令订阅的，那么这个字段就是空。

PubSub 缺点

PubSub 的⽣产者传递过来⼀个消息，Redis 会直接找到相应的消费
者传递过去。如果⼀个消费者都没有，那么消息直接丢弃。如果开始
有三个消费者，⼀个消费者突然挂掉了，⽣产者会继续发送消息，另
外两个消费者可以持续收到消息。但是挂掉的消费者重新连上的时
候，这断连期间⽣产者发送的消息，对于这个消费者来说就是彻底丢
失了。

如果 Redis 停机重启，PubSub 的消息是不会持久化的，毕竟
Redis 宕机就相当于⼀个消费者都没有，所有的消息直接被丢弃。

正是因为 PubSub 有这些缺点，它⼏乎找不到合适的应⽤场景。所
以 Redis 的作者单独开启了⼀个项⽬ Disque 专⻔⽤来做多播消息
队列。该项⽬⽬前没有成熟，⼀直⻓期处于 Beta 版本，但是相应的
客户端 sdk 已经⾮常丰富了，就待 Redis 作者临⻔⼀脚发布⼀个
Release 版本。关于 Disque 的更多细节，本⼩册不会多做详细介
绍，感兴趣的同学可以去阅读相关⽂档。

补充

近期 Redis5.0 新增了 Stream 数据结构，这个功能给 Redis 带来
了持久化消息队列，从此 PubSub 可以消失了，Disqueue 估计也
永远发不出它的 Release 版本了。具体内容请读者阅读 Stream 章
节内容（第 23 节）。

