
原理 7：开源节流 —— ⼩对象压
缩

Redis 是⼀个⾮常耗费内存的数据库，它所有的数据都放在内存⾥。
如果我们不注意节约使⽤内存，Redis 就会因为我们的⽆节制使⽤出
现内存不⾜⽽崩溃。Redis 作者为了优化数据结构的内存占⽤，也苦
⼼孤诣增加了⾮常多的优化点，这些优化也是以牺牲代码的可读性为
代价的，但是毫⽆疑问这是⾮常值得的，尤其像 Redis 这种数据
库。

32bit vs 64bit

Redis 如果使⽤ 32bit 进⾏编译，内部所有数据结构所使⽤的指针
空间占⽤会少⼀半，如果你对 Redis 使⽤内存不超过 4G，可以考虑
使⽤ 32bit 进⾏编译，可以节约⼤量内存。4G 的容量作为⼀些⼩型
站点的缓存数据库是绰绰有余了，如果不⾜还可以通过增加实例的⽅
式来解决。

⼩对象压缩存储 (ziplist)

如果 Redis 内部管理的集合数据结构很⼩，它会使⽤紧凑存储形式
压缩存储。

这就好⽐ HashMap 本来是⼆维结构，但是如果内部元素⽐较少，
使⽤⼆维结构反⽽浪费空间，还不如使⽤⼀维数组进⾏存储，需要查
找时，因为元素少进⾏遍历也很快，甚⾄可以⽐ HashMap 本身的
查找还要快。⽐如下⾯我们可以使⽤数组来模拟 HashMap 的增删
改操作。

public class ArrayMap<K, V> {

 private List<K> keys = new ArrayList<>();
 private List<V> values = new ArrayList<>();

 public V put(K k, V v) {
 for (int i = 0; i < keys.size(); i++) {
 if (keys.get(i).equals(k)) {
 V oldv = values.get(i);
 values.set(i, v);
 return oldv;
 }
 }
 keys.add(k);
 values.add(v);
 return null;
 }

 public V get(K k) {
 for (int i = 0; i < keys.size(); i++) {
 if (keys.get(i).equals(k)) {
 return values.get(i);
 }
 }
 return null;
 }

 public V delete(K k) {
 for (int i = 0; i < keys.size(); i++) {
 if (keys.get(i).equals(k)) {
 keys.remove(i);
 return values.remove(i);
 }
 }

 return null;
 }

}

Redis 的 ziplist 是⼀个紧凑的字节数组结构，如下图所示，每个元
素之间都是紧挨着的。我们不⽤过于关⼼ zlbytes/zltail 和
zlend 的含义，稍微了解⼀下就好。

如果它存储的是 hash 结构，那么 key 和 value 会作为两个 entry
相邻存在⼀起。

127.0.0.1:6379> hset hello a 1
(integer) 1
127.0.0.1:6379> hset hello b 2
(integer) 1
127.0.0.1:6379> hset hello c 3
(integer) 1
127.0.0.1:6379> object encoding hello
"ziplist"

如果它存储的是 zset，那么 value 和 score 会作为两个 entry 相邻
存在⼀起。

127.0.0.1:6379> zadd world 1 a
(integer) 1
127.0.0.1:6379> zadd world 2 b
(integer) 1
127.0.0.1:6379> zadd world 3 c
(integer) 1
127.0.0.1:6379> object encoding world
"ziplist"

关于压缩列表更多细节，请阅读第34节《极度深寒 —— 探索「列
表」内部结构》
(https://juejin.im/book/5afc2e5f6fb9a07a9b362527/section/5b5c95226fb9a04fa42fc3f6)
和第35节《极度深寒 —— 探索「紧凑列表」内部》
(https://juejin.im/book/5afc2e5f6fb9a07a9b362527/section/5b5d3ec0f265da0f91561c33)

Redis 的 intset 是⼀个紧凑的整数数组结构，它⽤于存放元素都
是整数的并且元素个数较少的 set 集合。

如果整数可以⽤ uint16 表示，那么 intset 的元素就是 16 位的数
组，如果新加⼊的整数超过了 uint16 的表示范围，那么就使⽤
uint32 表示，如果新加⼊的元素超过了 uint32 的表示范围，那么
就使⽤ uint64 表示，Redis ⽀持 set 集合动态从 uint16 升级到
uint32，再升级到 uint64。

https://juejin.im/book/5afc2e5f6fb9a07a9b362527/section/5b5c95226fb9a04fa42fc3f6
https://juejin.im/book/5afc2e5f6fb9a07a9b362527/section/5b5d3ec0f265da0f91561c33

127.0.0.1:6379> sadd hello 1 2 3
(integer) 3
127.0.0.1:6379> object encoding hello
"intset"

如果 set ⾥存储的是字符串，那么 sadd ⽴即升级为 hashtable 结
构。还记得 Java 的 HashSet 么，它内部是使⽤ HashMap 实现
的。

127.0.0.1:6379> sadd hello yes no
(integer) 2
127.0.0.1:6379> object encoding hello
"hashtable"

存储界限
当集合对象的元素不断增加，或者某个 value 值过⼤，这种⼩对象
存储也会被升级为标准结构。Redis 规定在⼩对象存储结构的限制条
件如下：

hash-max-ziplist-entries 512 # hash 的元素个数超过
512 就必须⽤标准结构存储
hash-max-ziplist-value 64 # hash 的任意元素的
key/value 的⻓度超过 64 就必须⽤标准结构存储
list-max-ziplist-entries 512 # list 的元素个数超过
512 就必须⽤标准结构存储
list-max-ziplist-value 64 # list 的任意元素的⻓度超
过 64 就必须⽤标准结构存储
zset-max-ziplist-entries 128 # zset 的元素个数超过
128 就必须⽤标准结构存储
zset-max-ziplist-value 64 # zset 的任意元素的⻓度超
过 64 就必须⽤标准结构存储
set-max-intset-entries 512 # set 的整数元素个数超过
512 就必须⽤标准结构存储

接下来我们做⼀个⼩实验，看看这⾥的界限是不是真的起到作⽤了。

import redis
client = redis.StrictRedis()
client.delete("hello")
for i in range(512):
 client.hset("hello", str(i), str(i))
print client.object("encoding", "hello") # 获取对
象的存储结构
client.hset("hello", "512", "512")
print client.object("encoding", "hello") # 再次获取
对象的存储结构

输出：

ziplist
hashtable

可以看出来当 hash 结构的元素个数超过 512 的时候，存储结构就
发⽣了变化。

接下来我们再试试递增 value 的⻓度，在 Python ⾥⾯对字符串乘
以⼀个整数 n 相当于重复 n 次。

import redis
client = redis.StrictRedis()
client.delete("hello")
for i in range(64):
 client.hset("hello", str(i), "0" * (i+1))
print client.object("encoding", "hello") # 获取对
象的存储结构
client.hset("hello", "512", "0" * 65)
print client.object("encoding", "hello") # 再次获取
对象的存储结构

输出：

ziplist
hashtable

可以看出来当 hash 结构的任意 entry 的 value 值超过了 64，存储
结构就升级成标准结构了。

内存回收机制

Redis 并不总是可以将空闲内存⽴即归还给操作系统。

如果当前 Redis 内存有 10G，当你删除了 1GB 的 key 后，再去观
察内存，你会发现内存变化不会太⼤。原因是操作系统回收内存是以
⻚为单位，如果这个⻚上只要有⼀个 key 还在使⽤，那么它就不能
被回收。Redis 虽然删除了 1GB 的 key，但是这些 key 分散到了很
多⻚⾯中，每个⻚⾯都还有其它 key 存在，这就导致了内存不会⽴
即被回收。

不过，如果你执⾏ flushdb，然后再观察内存会发现内存确实被回
收了。原因是所有的 key 都⼲掉了，⼤部分之前使⽤的⻚⾯都完全
⼲净了，会⽴即被操作系统回收。

Redis 虽然⽆法保证⽴即回收已经删除的 key 的内存，但是它会重
⽤那些尚未回收的空闲内存。这就好⽐电影院⾥虽然⼈⾛了，但是座
位还在，下⼀波观众来了，直接坐就⾏。⽽操作系统回收内存就好⽐
把座位都给搬⾛了。这个⽐喻是不是很 6？

内存分配算法

内存分配是⼀个⾮常复杂的课题，需要适当的算法划分内存⻚，需要
考虑内存碎⽚，需要平衡性能和效率。

Redis 为了保持⾃身结构的简单性，在内存分配这⾥直接做了甩⼿掌
柜，将内存分配的细节丢给了第三⽅内存分配库去实现。⽬前 Redis
可以使⽤ jemalloc(facebook) 库来管理内存，也可以切换到
tcmalloc(google)。因为 jemalloc 相⽐ tcmalloc的性能要稍好⼀
些，所以Redis默认使⽤了jemalloc。

127.0.0.1:6379> info memory
Memory
used_memory:809608
used_memory_human:790.63K
used_memory_rss:8232960
used_memory_peak:566296608
used_memory_peak_human:540.06M
used_memory_lua:36864
mem_fragmentation_ratio:10.17
mem_allocator:jemalloc-3.6.0

通过info memory指令可以看到 Redis 的mem_allocator使⽤了
jemalloc。

扩展阅读

jemalloc —— 内存分配的奥义 (http://tinylab.org/memory-
allocation-mystery-%C2%B7-jemalloc-a/)

http://tinylab.org/memory-allocation-mystery-%C2%B7-jemalloc-a/

