RIE 7: FRTR — DHRE
2

Redis E—TIFERBANFINIEE, EMAENBESRKRERNEZE,
MRBANNEFETHERAAF, Redis AR BNNETHIER L
HNFAEMERS. Redis (EERN T MATIREMWIINEFESH, BE
CIIEEBIN TR SHNNMAR, XEAAERI AR REIER
RNEY, BEE2LREDXZIFEERN, LERK Redis XFEHE
s

32bit vs 64bit

Redis #IR{EM 32bit #1T%1%, AERFTE BURSMPT{ERRITEH
TERGASD—F, WRIRX Redis EFARGFAET 4G, AINER
£/ 32bit #1791, AIUTURERNZF, 46 NFEFH—L/NE
NRHNEFHIEEREEERT, NRAREA] BT EIMELAEIRITS
TVRARIR .

ITREGATFNE (ziplist)

91 Redis ASFEENESEIREEMR), ERERZREFHEL
E%a1704 .

XFaFLE HashMap kE 4451, E2MRWERTRERD,
(ERA_HEMRTREZE, EAUER—HHEHBTEHE, FTEE
iy, EATRDHITEHERR, BEEFLALL HashMap KSR
ERAEEIR, LA FERA A LAEREAEREL HashMap RIIEH)
DURTE

public class ArrayMap<K, V> {

private List<K> keys = new ArraylList<>();
private List<V> values = new ArraylList<>();

public V put(K k, V v) {
for (int 1 = 0; 1 < keys.s1ize(); 1++) {
1f (keys.get(i).equals(k)) {
V oldv = values.get(1i);
values.set(i, v);
return oldv;

¥
}
keys.add(k);
values.add(v);
return null;

h

public V get(K k) {
for (int 1 = 0; 1 < keys.s1ze(); 1++) {
1f (keys.get(i).equals(k)) {
return values.get(i);
¥
Iy

return null;

h

public V delete(K k) {
for (int 1 = 0; 1 < keys.s1ze(); 1++) {
1f (keys.get(i).equals(k)) {
keys.remove(i);
return values.remove(i);
¥
¥

return null;

h

3

Redis By ziplist @— T REZNFTHAELEN, WFEMR, 87T
SZZEEEREEN, BAITHT TR0 zlbytes/z1tail Al
zlend NEX, THM T E— M,

BE—entryi{Ris &
ETHEEURESTE

N
SRR T EARMISSATFIRICE R

L 4 |

entryfUETE

zlbytes zltail zllen entry entry entry ees entry Zlend

Porot T

4 bytes 4 bytes 2 bytes 1 bytes

WREZMHEZ hash 2549, FBA key F value ZERNF entry
BRFE—IE.

127.0.0.1:6379> hset hello a 1
(integer) 1

127.0.0.1:6379> hset hello b 2
(integer) 1

127.0.0.1:6379> hset hello c 3
(integer) 1

127.0.0.1:6379> object encoding hello
"ziplist"

MREZMEME zset, B4 value] score SENF entry 1HAR
FE—iE,

127.0.0.1:6379> zadd world 1 a
(integer) 1

127.0.0.1:6379> zadd world 2 b
(integer) 1

127.0.0.1:6379> zadd world 3 c
(integer) 1

127.0.0.1:6379> object encoding world
"ziplist"

KXTFEAHEFIREZMT, BEIEREI4T_(RERE — 8XF 17
El IE:‘IEQ:I:EA»
(https://juejin.im/book/5afc2e5f6fb9a07a9b362527/section,
MEIST (REZRE — 1RE NEF51E | AEE)
(https://juejin.im/book/5afc2e5f6fb9a07a9b362527/section,

Redis B intset E— 1T REENEHIALEN, ERATEFBUTEER
EEHFABTRE TR set &5,

ANREECIAR uintle R, B4 intset BITERIE 16 (IAVEX
H, WNRFAIMANREEGET T vintle WRTEE, BAMER
uint32 X, WRFHMANTEEEI T uint32 BRSEE, B4
MAEA uint64 TR, Redis x5 set EEENEM uintle HRE!
uint32, BALEI uint64,

ZFvaluel{i=16/32/64

|
'

encoding length value | walue | value | value | value

TTEMTH

https://juejin.im/book/5afc2e5f6fb9a07a9b362527/section/5b5c95226fb9a04fa42fc3f6
https://juejin.im/book/5afc2e5f6fb9a07a9b362527/section/5b5d3ec0f265da0f91561c33

127.0.0.1:6379> sadd hello 1 2 3
(integer) 3

127.0.0.1:6379> object encoding hello
"intset"

AR set BEFMENEFRE, B4 sadd IZENFHKA hashtable 25
¥, ICS Java B9 HashSet 4, ERERZ{EA HashMap 5L
B9,

127.0.0.1:6379> sadd hello yes no
(integer) 2

127.0.0.1:6379> object encoding hello
"hashtable"

FhiE57AR

SAESNRNTEALMEM, HERET value ETKR, ZMNTR
EFEDSWARNINESEN ., Redis MIEENNREMEMIIRGIF
HanF:

hash-max-ziplist-entries 512 # hash BTZEEGED
512 FRAFRITESEIZE

hash-max-ziplist-value 64 # hash FIFEETERN
key/value WKEBIE 64 MoMAINESIFEAE
list-max-ziplist-entries 512 # list BYTZEEGED
512 FHNTFBATESEIF0E

list-max-ziplist-value 64 # list HIEETZNEER
T 64 WA eSS TR 0E

zset-max-ziplist-entries 128 # zset BYTZEDEGET
128 TR ESEIIFE

zset-max-ziplist-value 64 # zset H{EFETEZNKERE
3 64 WA SR 0E

set-max-intset-entries 512 # set H9EEHTTEDEGET
512 FNFRITESFIFE

BRI —1) 28, BEXENFAREFNSEREEERT .,

import redis
client = redis.StrictRedis()
client.delete("hello")
for 1 1n range(512):

client.hset("hello", str(i), str(i))
print client.object("encoding", "hello") # 3JREXX
RIFEE
client.hset("hello", "512", "512™)
print client.object("encoding", "hello") # BH/XIREX
X RAVIFHE LG

Bl

ziplist
hashtable

AILAB RS hash SMATETEHEY 512 RIR, FHESHR
RETEW,

R RBATFIIEE value BIKE, £ Python BEXNFRFE3E
M—TEH n HITEE niX,

import redis
client = redis.StrictRedis()
client.delete("hello")
for 1 in range(64):

client.hset("hello", str(i), "0" * (i+1))
print client.object("encoding", "hello") # JFXKEXX
KNFESN
client.hset("hello", "512", "@" * 65)
print client.object("encoding", "hello") # BRIKEX
X RAVIFHE G

Bl

ziplist
hashtable

AIIME Y hash EHR{EE entry B value BIBIE T 64, 7%
EMM A RATELET T,

P 1F o] UK A 1

Redis # S ARZERRZFILENIERLRIER S

ANRH7I Redis ATFEE 10G, SH{RMIFRT 1GB 89 key f5, BEM
RAE, MMERIAEEAARESAKR. EERZRERZREKAFZEA
TIABEM, NRXTTTEREEF T key BEEA, BBAEMAEE
eI, Redis 2AMIERT 1GB B key, {BRiXLE key 2EEI TR
ZTNET, ST TEIHBEEHTE key 7, XS TAGFEASIL
B4 UL,

A, WRIRHT flushdb, REBIAERNFZKIMAFHHLHKE]
Y . RRZMEN key #TET, KEbp ZAERNNEETE
TE7T, IUHIRIERZEIL,

Redis 2ATTIARIEIZEICIE L MBREY key BIRNE, ERER
AL EREIBNZERNAF. XMFLLEORERAAET, BRE
ETE, FT—IKRMARKT, EERLHMIT. MRERFLKAFMTLL
IEEAIERGIRE T . XTEERZENER 6?

REFEDEERE

RESEE—TIFEERNRE, FEEINEENITRNER, F
ZRAEHR, FEFEIEENNE,

Redis N TRIFEBEMNE RN, EFAFESIEXEERMTRFE
B, BAGTEDENATERTE=FNEDEESII, BAI Redis
AIAfEM jemalloc(facebook) EEREERNF, eI US|
tcmalloc(google), & A jemalloc #8LE tcmallochIMEREEFHIF—
Lt PFrLARedisERINER T jemalloc,

127.0.0.1:6379> info memory

Memory

used_memory: 809608
used_memory_human: 790 .63K
used_memory_rss:8232960
used_memory_peak:566296608
used_memory_peak_human:540.06M
used_memory_lua:36864
mem_fragmentation_ratio:10.17
mem_allocator:jemalloc-3.6.0

Bidinfo memoryiE<rILAE R Redis Bmem_allocator{EAT
jemalloc,

¥ RIEIE

iemalloc —— AEAECHEE Y (http://tinylab.org/memory-
allocation-mystery-%C2%B7-jemalloc-a/)

http://tinylab.org/memory-allocation-mystery-%C2%B7-jemalloc-a/

