
集群 1：李代桃僵 —— Sentinel
⽬前我们讲的 Redis 还只是主从⽅案，最终⼀致性。读者们可思考
过，如果主节点凌晨 3 点突发宕机怎么办？就坐等运维从床上爬起
来，然后⼿⼯进⾏从主切换，再通知所有的程序把地址统统改⼀遍重
新上线么？毫⽆疑问，这样的⼈⼯运维效率太低，事故发⽣时估计得
⾄少 1 个⼩时才能缓过来。如果是⼀个⼤型公司，这样的事故⾜以
上新闻了。

所以我们必须有⼀个⾼可⽤⽅案来抵抗节点故障，当故障发⽣时可以
⾃动进⾏从主切换，程序可以不⽤重启，运维可以继续睡⼤觉，仿佛
什么事也没发⽣⼀样。Redis 官⽅提供了这样⼀种⽅案 —— Redis
Sentinel(哨兵)。



我们可以将 Redis Sentinel 集群看成是⼀个 ZooKeeper 集群，它
是集群⾼可⽤的⼼脏，它⼀般是由 3～5 个节点组成，这样挂了个别
节点集群还可以正常运转。

它负责持续监控主从节点的健康，当主节点挂掉时，⾃动选择⼀个最
优的从节点切换为主节点。客户端来连接集群时，会⾸先连接
sentinel，通过 sentinel 来查询主节点的地址，然后再去连接主节
点进⾏数据交互。当主节点发⽣故障时，客户端会重新向 sentinel
要地址，sentinel 会将最新的主节点地址告诉客户端。如此应⽤程
序将⽆需重启即可⾃动完成节点切换。⽐如上图的主节点挂掉后，集
群将可能⾃动调整为下图所示结构。



从这张图中我们能看到主节点挂掉了，原先的主从复制也断开了，客
户端和损坏的主节点也断开了。从节点被提升为新的主节点，其它从
节点开始和新的主节点建⽴复制关系。客户端通过新的主节点继续进
⾏交互。Sentinel 会持续监控已经挂掉了主节点，待它恢复后，集
群会调整为下⾯这张图。



此时原先挂掉的主节点现在变成了从节点，从新的主节点那⾥建⽴复
制关系。

消息丢失

Redis 主从采⽤异步复制，意味着当主节点挂掉时，从节点可能没有
收到全部的同步消息，这部分未同步的消息就丢失了。如果主从延迟
特别⼤，那么丢失的数据就可能会特别多。Sentinel ⽆法保证消息
完全不丢失，但是也尽可能保证消息少丢失。它有两个选项可以限制
主从延迟过⼤。

min-slaves-to-write 1
min-slaves-max-lag 10

第⼀个参数表示主节点必须⾄少有⼀个从节点在进⾏正常复制，否则
就停⽌对外写服务，丧失可⽤性。

何为正常复制，何为异常复制？这个就是由第⼆个参数控制的，它的
单位是秒，表示如果 10s 没有收到从节点的反馈，就意味着从节点
同步不正常，要么⽹络断开了，要么⼀直没有给反馈。

Sentinel 基本使⽤

接下来我们看看客户端如何使⽤ sentinel，标准的流程应该是客户
端可以通过 sentinel 发现主从节点的地址，然后在通过这些地址建
⽴相应的连接来进⾏数据存取操作。我们来看看 Python 客户端是如
何做的。



>>> from redis.sentinel import Sentinel
>>> sentinel = Sentinel([('localhost', 26379)], 
socket_timeout=0.1)
>>> sentinel.discover_master('mymaster')
('127.0.0.1', 6379)
>>> sentinel.discover_slaves('mymaster')
[('127.0.0.1', 6380)]

sentinel 的默认端⼝是 26379，不同于 Redis 的默认端⼝ 6379，
通过 sentinel 对象的 discover_xxx ⽅法可以发现主从地址，主地
址只有⼀个，从地址可以有多个。

>>> master = sentinel.master_for('mymaster', 
socket_timeout=0.1)
>>> slave = sentinel.slave_for('mymaster', 
socket_timeout=0.1)
>>> master.set('foo', 'bar')
>>> slave.get('foo')
'bar'

通过 xxx_for ⽅法可以从连接池中拿出⼀个连接来使⽤，因为从地
址有多个，redis 客户端对从地址采⽤轮询⽅案，也就是
RoundRobin 轮着来。

有个问题是，但 sentinel 进⾏主从切换时，客户端如何知道地址变
更了 ? 通过分析源码，我发现 redis-py 在建⽴连接的时候进⾏了主
库地址变更判断。

连接池建⽴新连接时，会去查询主库地址，然后跟内存中的主库地址
进⾏⽐对，如果变更了，就断开所有连接，重新使⽤新地址建⽴新连
接。如果是旧的主库挂掉了，那么所有正在使⽤的连接都会被关闭，
然后在重连时就会⽤上新地址。



但是这样还不够，如果是 sentinel 主动进⾏主从切换，主库并没有
挂掉，⽽之前的主库连接已经建⽴了在使⽤了，没有新连接需要建
⽴，那这个连接是不是⼀致切换不了？

继续深⼊研究源码，我发现 redis-py 在另外⼀个点也做了控制。那
就是在处理命令的时候捕获了⼀个特殊的异常ReadOnlyError，在
这个异常⾥将所有的旧连接全部关闭了，后续指令就会进⾏重连。

主从切换后，之前的主库被降级到从库，所有的修改性的指令都会抛
出ReadonlyError。如果没有修改性指令，虽然连接不会得到切
换，但是数据不会被破坏，所以即使不切换也没关系。

作业

1. 尝试⾃⼰搭建⼀套 redis-sentinel 集群；
2. 使⽤ Python 或者 Java 的客户端对集群进⾏⼀些常规操作；
3. 试试主从切换，主动切换和被动切换都试⼀试，看看客户端能
否正常切换连接；


