
应⽤ 1：千帆竞发 —— 分布式锁
分布式应⽤进⾏逻辑处理时经常会遇到并发问题。

⽐如⼀个操作要修改⽤户的状态，修改状态需要先读出⽤户的状态，
在内存⾥进⾏修改，改完了再存回去。如果这样的操作同时进⾏了，
就会出现并发问题，因为读取和保存状态这两个操作不是原⼦的。
（Wiki 解释：所谓原⼦操作是指不会被线程调度机制打断的操作；
这种操作⼀旦开始，就⼀直运⾏到结束，中间不会有任何 context
switch 线程切换。）

这个时候就要使⽤到分布式锁来限制程序的并发执⾏。Redis 分布式
锁使⽤⾮常⼴泛，它是⾯试的重要考点之⼀，很多同学都知道这个知
识，也⼤致知道分布式锁的原理，但是具体到细节的使⽤上往往并不
完全正确。

分布式锁

分布式锁本质上要实现的⽬标就是在 Redis ⾥⾯占⼀个“茅坑”，当别
的进程也要来占时，发现已经有⼈蹲在那⾥了，就只好放弃或者稍后
再试。

占坑⼀般是使⽤ setnx(set if not exists) 指令，只允许被⼀个客户
端占坑。先来先占，
⽤完了，再调⽤ del 指令释放茅坑。

// 这⾥的冒号:就是⼀个普通的字符，没特别含义，它可以是任意
其它字符，不要误解
> setnx lock:codehole true
OK
... do something critical ...
> del lock:codehole
(integer) 1

但是有个问题，如果逻辑执⾏到中间出现异常了，可能会导致 del
指令没有被调⽤，这样就会陷⼊死锁，锁永远得不到释放。

于是我们在拿到锁之后，再给锁加上⼀个过期时间，⽐如 5s，这样
即使中间出现异常也可以保证 5 秒之后锁会⾃动释放。

> setnx lock:codehole true
OK
> expire lock:codehole 5
... do something critical ...
> del lock:codehole
(integer) 1

但是以上逻辑还有问题。如果在 setnx 和 expire 之间服务器进程突
然挂掉了，可能是因为机器掉电或者是被⼈为杀掉的，就会导致
expire 得不到执⾏，也会造成死锁。

这种问题的根源就在于 setnx 和 expire 是两条指令⽽不是原⼦指
令。如果这两条指令可以⼀起执⾏就不会出现问题。也许你会想到⽤
Redis 事务来解决。但是这⾥不⾏，因为 expire 是依赖于 setnx 的

执⾏结果的，如果 setnx 没抢到锁，expire 是不应该执⾏的。事务
⾥没有 if-else 分⽀逻辑，事务的特点是⼀⼝⽓执⾏，要么全部执⾏
要么⼀个都不执⾏。

为了解决这个疑难，Redis 开源社区涌现了⼀堆分布式锁的
library，专⻔⽤来解决这个问题。实现⽅法极为复杂，⼩⽩⽤户⼀
般要费很⼤的精⼒才可以搞懂。如果你需要使⽤分布式锁，意味着你
不能仅仅使⽤ Jedis 或者 redis-py 就⾏了，还得引⼊分布式锁的
library。

为了治理这个乱象，Redis 2.8 版本中作者加⼊了 set 指令的扩展参
数，使得 setnx 和 expire 指令可以⼀起执⾏，彻底解决了分布式锁
的乱象。从此以后所有的第三⽅分布式锁 library 可以休息了。

> set lock:codehole true ex 5 nx
OK
... do something critical ...
> del lock:codehole

上⾯这个指令就是 setnx 和 expire 组合在⼀起的原⼦指令，它就是
分布式锁的奥义所在。

超时问题

Redis 的分布式锁不能解决超时问题，如果在加锁和释放锁之间的逻
辑执⾏的太⻓，以⾄于超出了锁的超时限制，就会出现问题。因为这
时候第⼀个线程持有的锁过期了，临界区的逻辑还没有执⾏完，这个
时候第⼆个线程就提前重新持有了这把锁，导致临界区代码不能得到
严格的串⾏执⾏。

为了避免这个问题，Redis 分布式锁不要⽤于较⻓时间的任务。如果
真的偶尔出现了，数据出现的⼩波错乱可能需要⼈⼯介⼊解决。

tag = random.nextint() # 随机数
if redis.set(key, tag, nx=True, ex=5):
 do_something()
 redis.delifequals(key, tag) # 假想的
delifequals 指令

有⼀个稍微安全⼀点的⽅案是为 set 指令的 value 参数设置为⼀个
随机数，释放锁时先匹配随机数是否⼀致，然后再删除 key，这是为
了确保当前线程占有的锁不会被其它线程释放，除⾮这个锁是过期了
被服务器⾃动释放的。
但是匹配 value 和删除 key 不是⼀个原⼦操作，Redis 也没有提供
类似于delifequals这样的指令，这就需要使⽤ Lua 脚本来处理
了，因为 Lua 脚本可以保证连续多个指令的原⼦性执⾏。

delifequals
if redis.call("get",KEYS[1]) == ARGV[1] then
 return redis.call("del",KEYS[1])
else
 return 0
end

但是这也不是⼀个完美的⽅案，它只是相对安全⼀点，因为如果真的
超时了，当前线程的逻辑没有执⾏完，其它线程也会乘虚⽽⼊。

可重⼊性

可重⼊性是指线程在持有锁的情况下再次请求加锁，如果⼀个锁⽀持
同⼀个线程的多次加锁，那么这个锁就是可重⼊的。⽐如 Java 语⾔
⾥有个 ReentrantLock 就是可重⼊锁。Redis 分布式锁如果要⽀持
可重⼊，需要对客户端的 set ⽅法进⾏包装，使⽤线程的
Threadlocal 变量存储当前持有锁的计数。

-*- coding: utf-8
import redis
import threading

locks = threading.local()
locks.redis = {}

def key_for(user_id):
 return "account_{}".format(user_id)

def _lock(client, key):
 return bool(client.set(key, True, nx=True,
ex=5))

def _unlock(client, key):
 client.delete(key)

def lock(client, user_id):
 key = key_for(user_id)
 if key in locks.redis:
 locks.redis[key] += 1
 return True
 ok = _lock(client, key)

 if not ok:
 return False
 locks.redis[key] = 1
 return True

def unlock(client, user_id):
 key = key_for(user_id)
 if key in locks.redis:
 locks.redis[key] -= 1
 if locks.redis[key] <= 0:
 del locks.redis[key]
 self._unlock(key)
 return True
 return False

client = redis.StrictRedis()
print "lock", lock(client, "codehole")
print "lock", lock(client, "codehole")
print "unlock", unlock(client, "codehole")
print "unlock", unlock(client, "codehole")

以上还不是可重⼊锁的全部，精确⼀点还需要考虑内存锁计数的过期
时间，代码复杂度将会继续升⾼。⽼钱不推荐使⽤可重⼊锁，它加重
了客户端的复杂性，在编写业务⽅法时注意在逻辑结构上进⾏调整完
全可以不使⽤可重⼊锁。下⾯是 Java 版本的可重⼊锁。

public class RedisWithReentrantLock {

 private ThreadLocal<Map<String, Integer>>
lockers = new ThreadLocal<>();

 private Jedis jedis;

 public RedisWithReentrantLock(Jedis jedis) {
 this.jedis = jedis;
 }

 private boolean _lock(String key) {
 return jedis.set(key, "", "nx", "ex", 5L) !=
null;
 }

 private void _unlock(String key) {
 jedis.del(key);
 }

 private Map<String, Integer> currentLockers() {
 Map<String, Integer> refs = lockers.get();
 if (refs != null) {
 return refs;
 }
 lockers.set(new HashMap<>());
 return lockers.get();
 }

 public boolean lock(String key) {
 Map<String, Integer> refs = currentLockers();
 Integer refCnt = refs.get(key);
 if (refCnt != null) {
 refs.put(key, refCnt + 1);
 return true;
 }
 boolean ok = this._lock(key);
 if (!ok) {
 return false;

 }
 refs.put(key, 1);
 return true;
 }

 public boolean unlock(String key) {
 Map<String, Integer> refs = currentLockers();
 Integer refCnt = refs.get(key);
 if (refCnt == null) {
 return false;
 }
 refCnt -= 1;
 if (refCnt > 0) {
 refs.put(key, refCnt);
 } else {
 refs.remove(key);
 this._unlock(key);
 }
 return true;
 }

 public static void main(String[] args) {
 Jedis jedis = new Jedis();
 RedisWithReentrantLock redis = new
RedisWithReentrantLock(jedis);
 System.out.println(redis.lock("codehole"));
 System.out.println(redis.lock("codehole"));
 System.out.println(redis.unlock("codehole"));
 System.out.println(redis.unlock("codehole"));
 }

}

跟 Python 版本区别不⼤，也是基于 ThreadLocal 和引⽤计数。

以上还不是分布式锁的全部，在⼩册的拓展篇《拾遗漏补 —— 再谈
分布式锁》
(https://juejin.im/book/5afc2e5f6fb9a07a9b362527/section/5b4c19216fb9a04fb8773ed1)
我们还会继续对分布式锁做进⼀步的深⼊理解。

思考题

1. Review 下你⾃⼰的项⽬代码中的分布式锁，它的使⽤⽅式是
否标准正确？

2. 如果你还没⽤过分布式锁，想想⾃⼰的项⽬中是否可以⽤上？

https://juejin.im/book/5afc2e5f6fb9a07a9b362527/section/5b4c19216fb9a04fb8773ed1

