
集群 2：分⽽治之 —— Codis
在⼤数据⾼并发场景下，单个 Redis 实例往往会显得捉襟⻅肘。⾸
先体现在内存上，单个 Redis 的内存不宜过⼤，内存太⼤会导致
rdb ⽂件过⼤，进⼀步导致主从同步时全量同步时间过⻓，在实例重
启恢复时也会消耗很⻓的数据加载时间，特别是在云环境下，单个实
例内存往往都是受限的。其次体现在 CPU 的利⽤率上，单个 Redis
实例只能利⽤单个核⼼，这单个核⼼要完成海量数据的存取和管理⼯
作压⼒会⾮常⼤。

正是在这样的⼤数据⾼并发的需求之下，Redis 集群⽅案应运⽽⽣。
它可以将众多⼩内存的 Redis 实例综合起来，将分布在多台机器上
的众多 CPU 核⼼的计算能⼒聚集到⼀起，完成海量数据存储和⾼并
发读写操作。

Codis (https://github.com/CodisLabs/codis) 是 Redis 集群⽅
案之⼀，令我们感到骄傲的是，它是中国⼈开发并开源的，来⾃前豌
⾖荚中间件团队。绝⼤多数国内的开源项⽬都不怎么靠谱，但是
Codis ⾮常靠谱。有了 Codis 技术积累之后，项⽬「突头⼈」刘奇
⼜开发出来中国⼈⾃⼰的开源分布式数据库 —— TiDB
(https://github.com/pingcap/tidb)，可以说 6 到⻜起。�

从 Redis 的⼴泛流⾏到 RedisCluster 的⼴泛使⽤之间相隔了好多
年，Codis 就是在这样的市场空缺的机遇下发展出来的。⼤型公司有
明确的 Redis 在线扩容需求，但是市⾯上没有特别好的中间件可以
做到这⼀点。

https://github.com/CodisLabs/codis
https://github.com/pingcap/tidb

Codis 使⽤ Go 语⾔开发，它是⼀个代理中间件，它和 Redis ⼀样
也使⽤ Redis 协议对外提供服务，当客户端向 Codis 发送指令时，
Codis 负责将指令转发到后⾯的 Redis 实例来执⾏，并将返回结果
再转回给客户端。

Codis 上挂接的所有 Redis 实例构成⼀个 Redis 集群，当集群空间
不⾜时，可以通过动态增加 Redis 实例来实现扩容需求。

客户端操纵 Codis 同操纵 Redis ⼏乎没有区别，还是可以使⽤相同
的客户端 SDK，不需要任何变化。

因为 Codis 是⽆状态的，它只是⼀个转发代理中间件，这意味着我
们可以启动多个 Codis 实例，供客户端使⽤，每个 Codis 节点都是
对等的。因为单个 Codis 代理能⽀撑的 QPS ⽐较有限，通过启动多
个 Codis 代理可以显著增加整体的 QPS 需求，还能起到容灾功能，
挂掉⼀个 Codis 代理没关系，还有很多 Codis 代理可以继续服务。

Codis 分⽚原理

Codis 要负责将特定的 key 转发到特定的 Redis 实例，那么这种对
应关系 Codis 是如何管理的呢？

Codis 将所有的 key 默认划分为 1024 个槽位(slot)，它⾸先对客户
端传过来的 key 进⾏ crc32 运算计算哈希值，再将 hash 后的整数
值对 1024 这个整数进⾏取模得到⼀个余数，这个余数就是对应
key 的槽位。

每个槽位都会唯⼀映射到后⾯的多个 Redis 实例之⼀，Codis 会在
内存维护槽位和 Redis 实例的映射关系。这样有了上⾯ key 对应的
槽位，那么它应该转发到哪个 Redis 实例就很明确了。

hash = crc32(command.key)
slot_index = hash % 1024
redis = slots[slot_index].redis
redis.do(command)

槽位数量默认是1024，它是可以配置的，如果集群节点⽐较多，建
议将这个数值配置⼤⼀些，⽐如2048、4096。

不同的 Codis 实例之间槽位关系如何同步？

如果 Codis 的槽位映射关系只存储在内存⾥，那么不同的 Codis 实
例之间的槽位关系就⽆法得到同步。所以 Codis 还需要⼀个分布式
配置存储数据库专⻔⽤来持久化槽位关系。Codis 开始使⽤

ZooKeeper，后来连 etcd 也⼀块⽀持了。

Codis 将槽位关系存储在 zk 中，并且提供了⼀个 Dashboard 可以
⽤来观察和修改槽位关系，当槽位关系变化时，Codis Proxy 会监
听到变化并重新同步槽位关系，从⽽实现多个 Codis Proxy 之间共
享相同的槽位关系配置。

扩容

刚开始 Codis 后端只有⼀个 Redis 实例，1024 个槽位全部指向同
⼀个 Redis。然后⼀个 Redis 实例内存不够了，所以⼜加了⼀个
Redis 实例。这时候需要对槽位关系进⾏调整，将⼀半的槽位划分到
新的节点。这意味着需要对这⼀半的槽位对应的所有 key 进⾏迁
移，迁移到新的 Redis 实例。

那 Codis 如何找到槽位对应的所有 key 呢？

Codis 对 Redis 进⾏了改造，增加了 SLOTSSCAN 指令，可以遍历
指定 slot 下所有的 key。Codis 通过 SLOTSSCAN 扫描出待迁移槽
位的所有的 key，然后挨个迁移每个 key 到新的 Redis 节点。

在迁移过程中，Codis 还是会接收到新的请求打在当前正在迁移的槽
位上，因为当前槽位的数据同时存在于新旧两个槽位中，Codis 如何
判断该将请求转发到后⾯的哪个具体实例呢？

Codis ⽆法判定迁移过程中的 key 究竟在哪个实例中，所以它采⽤
了另⼀种完全不同的思路。当 Codis 接收到位于正在迁移槽位中的
key 后，会⽴即强制对当前的单个 key 进⾏迁移，迁移完成后，再
将请求转发到新的 Redis 实例。

slot_index = crc32(command.key) % 1024
if slot_index in migrating_slots:
 do_migrate_key(command.key) # 强制执⾏迁移
 redis = slots[slot_index].new_redis
else:
 redis = slots[slot_index].redis
redis.do(command)

我们知道 Redis ⽀持的所有 Scan 指令都是⽆法避免重复的，同样
Codis ⾃定义的 SLOTSSCAN 也是⼀样，但是这并不会影响迁移。
因为单个 key 被迁移⼀次后，在旧实例中它就彻底被删除了，也就
不可能会再次被扫描出来了。

⾃动均衡

Redis 新增实例，⼿⼯均衡slots太繁琐，所以 Codis 提供了⾃动均
衡功能。⾃动均衡会在系统⽐较空闲的时候观察每个 Redis 实例对
应的 Slots 数量，如果不平衡，就会⾃动进⾏迁移。

Codis 的代价

Codis 给 Redis 带来了扩容的同时，也损失了其它⼀些特性。因为
Codis 中所有的 key 分散在不同的 Redis 实例中，所以事务就不能
再⽀持了，事务只能在单个 Redis 实例中完成。同样 rename 操作

也很危险，它的参数是两个 key，如果这两个 key 在不同的 Redis
实例中，rename 操作是⽆法正确完成的。Codis 的官⽅⽂档中给出
了⼀系列不⽀持的命令列表。

同样为了⽀持扩容，单个 key 对应的 value 不宜过⼤，因为集群的
迁移的最⼩单位是 key，对于⼀个 hash 结构，它会⼀次性使⽤
hgetall 拉取所有的内容，然后使⽤ hmset 放置到另⼀个节点。如
果 hash 内部的 kv 太多，可能会带来迁移卡顿。官⽅建议单个集合
结构的总字节容量不要超过 1M。如果我们要放置社交关系数据，例
如粉丝列表这种，就需要注意了，可以考虑分桶存储，在业务上作折
中。

Codis 因为增加了 Proxy 作为中转层，所有在⽹络开销上要⽐单个
Redis ⼤，毕竟数据包多⾛了⼀个⽹络节点，整体在性能上要⽐单个
Redis 的性能有所下降。但是这部分性能损耗不是太明显，可以通过
增加 Proxy 的数量来弥补性能上的不⾜。

Codis 的集群配置中⼼使⽤ zk 来实现，意味着在部署上增加了 zk
运维的代价，不过⼤部分互联⽹企业内部都有 zk 集群，可以使⽤现
有的 zk 集群使⽤即可。

Codis 的优点

Codis 在设计上相⽐ Redis Cluster 官⽅集群⽅案要简单很多，因
为它将分布式的问题交给了第三⽅ zk/etcd 去负责，⾃⼰就省去了
复杂的分布式⼀致性代码的编写维护⼯作。⽽ Redis Cluster 的内部
实现⾮常复杂，它为了实现去中⼼化，混合使⽤了复杂的 Raft 和
Gossip 协议，还有⼤量的需要调优的配置参数，当集群出现故障
时，维护⼈员往往不知道从何处着⼿。

MGET 指令的操作过程

mget 指令⽤于批量获取多个 key 的值，这些 key 可能会分布在多
个 Redis 实例中。Codis 的策略是将 key 按照所分配的实例打散分
组，然后依次对每个实例调⽤ mget ⽅法，最后将结果汇总为⼀
个，再返回给客户端。

架构变迁

Codis 作为⾮官⽅ Redis 集群⽅案，近⼏年来它的结构⼀直在不断
变化，⼀⽅⾯当官⽅的 Redis 有变化的时候它要实时去跟进，另⼀
⽅⾯它作为 Redis Cluster 的竞争⽅案之⼀，它还得持续提⾼⾃⼰的
竞争⼒，给⾃⼰增加更多的官⽅集群所没有的便捷功能。

⽐如 Codis 有个特⾊的地⽅在于强⼤的 Dashboard 功能，能够便
捷地对 Redis 集群进⾏管理。这是 Redis 官⽅所⽋缺的。另外
Codis 还开发了⼀个 Codis-fe(federation 联邦) ⼯具，可以同时对
多个 Codis 集群进⾏管理。在⼤型企业，Codis 集群往往会有⼏⼗
个，有这样⼀个便捷的联邦⼯具可以降低不少运维成本。

Codis 的尴尬

Codis 不是 Redis 官⽅项⽬，这意味着它的命运会⽆⽐曲折，它总
是要被官⽅ Redis 牵着⽜⿐⼦⾛。当 Redis 官⽅提供了什么功能它
⽋缺时，Codis 就会感到恐惧，害怕⾃⼰被市场甩掉，所以必须实时
保持跟进。

同时因为 Codis 总是要⽐ Redis 官⽅慢⼀拍，Redis 官⽅提供的最
新功能，Codis 往往要等很久才能同步。⽐如现在 Redis 已经进⼊
到 4.0 阶段，提供了插件化 Redis-Module ⽀持，⽬前 Codis 还没
有提供解决⽅案。

现在 Redis-Cluster 在业界已经逐渐流⾏起来，Codis 能否持续保
持竞争⼒是个问题，我们看到 Codis 在不断的差异化竞争，竞争的
⽅法就体现在⼯具上，⽽不是内核，这个和官⽅的路线真是相反的，
官⽅对⼯具⽆暇顾及，只提供基本的⼯具，其它完全交给第三⽅去开
发。

Codis 的后台管理

后台管理的界⾯⾮常友好，使⽤了最新的 BootStrap 前端框架。⽐
较酷炫的是可以看到实时的 QPS 波动曲线。

同时还⽀持服务器集群管理功能，可以增加分组、增加节点、执⾏⾃
动均衡等指令，还可以直接查看所有 slot 的状态，每个 slot 被分配
到哪个 Redis 实例。

思考 & 作业

1. 请读者⾃⼰尝试搭建⼀个 Codis 集群。
2. 使⽤ Python 或者 Java 客户端体验⼀下 Codis 集群的常规

Redis 指令。

