
拓展 1：⽿听⼋⽅ —— Stream

这篇⽂章的主要部分是我在 2018 年 6 ⽉ 1 ⽇ 发表的
内容，当时 Redis5.0 刚刚被 Antirez 放出来，⽼钱抢
先分析了 Redis5.0 最重要的特性 Stream，也被技术圈
⼤号「⾼可⽤架构」收录转载，受到了⼴泛关注。事后
我⼜对⽂章的内容做了进⼀步优化，并整合了⼀些读者
的疑难问题解答。

Redis5.0 被作者 Antirez 突然放了出来，增加了很多新的特⾊功
能。⽽ Redis5.0 最⼤的新特性就是多出了⼀个数据结构 Stream，
它是⼀个新的强⼤的⽀持多播的可持久化的消息队列，作者坦⾔
Redis Stream 狠狠地借鉴了 Kafka 的设计。

Redis Stream 的结构如上图所示，它有⼀个消息链表，将所有加⼊
的消息都串起来，每个消息都有⼀个唯⼀的 ID 和对应的内容。消息
是持久化的，Redis 重启后，内容还在。

每个 Stream 都有唯⼀的名称，它就是 Redis 的 key，在我们⾸次
使⽤xadd指令追加消息时⾃动创建。

每个 Stream 都可以挂多个消费组，每个消费组会有个游
标last_delivered_id在 Stream 数组之上往前移动，表示当前
消费组已经消费到哪条消息了。每个消费组都有⼀个 Stream 内唯⼀
的名称，消费组不会⾃动创建，它需要单独的指令xgroup create
进⾏创建，需要指定从 Stream 的某个消息 ID 开始消费，这个 ID
⽤来初始化last_delivered_id变量。

每个消费组 (Consumer Group) 的状态都是独⽴的，相互不受影
响。也就是说同⼀份 Stream 内部的消息会被每个消费组都消费到。

同⼀个消费组 (Consumer Group) 可以挂接多个消费者
(Consumer)，这些消费者之间是竞争关系，任意⼀个消费者读取了
消息都会使游标last_delivered_id往前移动。每个消费者有⼀
个组内唯⼀名称。

消费者 (Consumer) 内部会有个状态变量pending_ids，它记录了
当前已经被客户端读取的消息，但是还没有 ack。如果客户端没有
ack，这个变量⾥⾯的消息 ID 会越来越多，⼀旦某个消息被 ack，
它就开始减少。这个 pending_ids 变量在 Redis 官⽅被称之
为PEL，也就是Pending Entries List，这是⼀个很核⼼的数据
结构，它⽤来确保客户端⾄少消费了消息⼀次，⽽不会在⽹络传输的
中途丢失了没处理。

消息 ID

消息 ID 的形式是timestampInMillis-sequence，例如
1527846880572-5，它表示当前的消息在毫⽶时间
戳1527846880572时产⽣，并且是该毫秒内产⽣的第 5 条消息。消
息 ID 可以由服务器⾃动⽣成，也可以由客户端⾃⼰指定，但是形式
必须是整数-整数，⽽且必须是后⾯加⼊的消息的 ID 要⼤于前⾯的
消息 ID。

消息内容

消息内容就是键值对，形如 hash 结构的键值对，这没什么特别之
处。

增删改查

1. xadd 追加消息
2. xdel 删除消息，这⾥的删除仅仅是设置了标志位，不影响消
息总⻓度

3. xrange 获取消息列表，会⾃动过滤已经删除的消息
4. xlen 消息⻓度
5. del 删除 Stream

* 号表示服务器⾃动⽣成 ID，后⾯顺序跟着⼀堆 key/value
名字叫 laoqian，年龄 30 岁
127.0.0.1:6379> xadd codehole * name laoqian age
30
1527849609889-0 # ⽣成的消息 ID
127.0.0.1:6379> xadd codehole * name xiaoyu age
29
1527849629172-0
127.0.0.1:6379> xadd codehole * name xiaoqian age
1
1527849637634-0

127.0.0.1:6379> xlen codehole
(integer) 3
-表示最⼩值 , + 表示最⼤值
127.0.0.1:6379> xrange codehole - +
127.0.0.1:6379> xrange codehole - +
1) 1) 1527849609889-0
 2) 1) "name"
 2) "laoqian"
 3) "age"
 4) "30"
2) 1) 1527849629172-0
 2) 1) "name"
 2) "xiaoyu"
 3) "age"
 4) "29"
3) 1) 1527849637634-0
 2) 1) "name"
 2) "xiaoqian"
 3) "age"
 4) "1"
指定最⼩消息 ID 的列表
127.0.0.1:6379> xrange codehole 1527849629172-0 +
1) 1) 1527849629172-0
 2) 1) "name"
 2) "xiaoyu"
 3) "age"
 4) "29"
2) 1) 1527849637634-0
 2) 1) "name"
 2) "xiaoqian"
 3) "age"
 4) "1"
指定最⼤消息 ID 的列表

127.0.0.1:6379> xrange codehole - 1527849629172-0
1) 1) 1527849609889-0
 2) 1) "name"
 2) "laoqian"
 3) "age"
 4) "30"
2) 1) 1527849629172-0
 2) 1) "name"
 2) "xiaoyu"
 3) "age"
 4) "29"
127.0.0.1:6379> xdel codehole 1527849609889-0
(integer) 1
⻓度不受影响
127.0.0.1:6379> xlen codehole
(integer) 3
被删除的消息没了
127.0.0.1:6379> xrange codehole - +
1) 1) 1527849629172-0
 2) 1) "name"
 2) "xiaoyu"
 3) "age"
 4) "29"
2) 1) 1527849637634-0
 2) 1) "name"
 2) "xiaoqian"
 3) "age"
 4) "1"
删除整个 Stream
127.0.0.1:6379> del codehole
(integer) 1

独⽴消费

我们可以在不定义消费组的情况下进⾏ Stream 消息的独⽴消费，当
Stream 没有新消息时，甚⾄可以阻塞等待。Redis 设计了⼀个单独
的消费指令xread，可以将 Stream 当成普通的消息队列 (list) 来使
⽤。使⽤ xread 时，我们可以完全忽略消费组 (Consumer Group)
的存在，就好⽐ Stream 就是⼀个普通的列表 (list)。

从 Stream 头部读取两条消息
127.0.0.1:6379> xread count 2 streams codehole 0-
0
1) 1) "codehole"
 2) 1) 1) 1527851486781-0
 2) 1) "name"
 2) "laoqian"
 3) "age"
 4) "30"
 2) 1) 1527851493405-0
 2) 1) "name"
 2) "yurui"
 3) "age"
 4) "29"
从 Stream 尾部读取⼀条消息，毫⽆疑问，这⾥不会返回任何
消息
127.0.0.1:6379> xread count 1 streams codehole $
(nil)
从尾部阻塞等待新消息到来，下⾯的指令会堵住，直到新消息到
来
127.0.0.1:6379> xread block 0 count 1 streams
codehole $
我们从新打开⼀个窗⼝，在这个窗⼝往 Stream ⾥塞消息
127.0.0.1:6379> xadd codehole * name youming age

60
1527852774092-0
再切换到前⾯的窗⼝，我们可以看到阻塞解除了，返回了新的消
息内容
⽽且还显示了⼀个等待时间，这⾥我们等待了 93s
127.0.0.1:6379> xread block 0 count 1 streams
codehole $
1) 1) "codehole"
 2) 1) 1) 1527852774092-0
 2) 1) "name"
 2) "youming"
 3) "age"
 4) "60"
(93.11s)

客户端如果想要使⽤ xread 进⾏顺序消费，⼀定要记住当前消费到
哪⾥了，也就是返回的消息 ID。下次继续调⽤ xread 时，将上次返
回的最后⼀个消息 ID 作为参数传递进去，就可以继续消费后续的消
息。

block 0 表示永远阻塞，直到消息到来，block 1000 表示阻塞
1s，如果 1s 内没有任何消息到来，就返回 nil。

127.0.0.1:6379> xread block 1000 count 1 streams
codehole $
(nil)
(1.07s)

创建消费组

Stream 通过xgroup create指令创建消费组 (Consumer
Group)，需要传递起始消息 ID 参数⽤来初始
化last_delivered_id变量。

表示从头开始消费
127.0.0.1:6379> xgroup create codehole cg1 0-0
OK
$ 表示从尾部开始消费，只接受新消息，当前 Stream 消息会
全部忽略
127.0.0.1:6379> xgroup create codehole cg2 $
OK
获取 Stream 信息
127.0.0.1:6379> xinfo stream codehole
 1) length
 2) (integer) 3 # 共 3 个消息
 3) radix-tree-keys
 4) (integer) 1
 5) radix-tree-nodes
 6) (integer) 2
 7) groups
 8) (integer) 2 # 两个消费组
 9) first-entry # 第⼀个消息

10) 1) 1527851486781-0
 2) 1) "name"
 2) "laoqian"
 3) "age"
 4) "30"
11) last-entry # 最后⼀个消息
12) 1) 1527851498956-0
 2) 1) "name"
 2) "xiaoqian"
 3) "age"
 4) "1"
获取 Stream 的消费组信息
127.0.0.1:6379> xinfo groups codehole
1) 1) name
 2) "cg1"
 3) consumers
 4) (integer) 0 # 该消费组还没有消费者
 5) pending
 6) (integer) 0 # 该消费组没有正在处理的消息
2) 1) name
 2) "cg2"
 3) consumers # 该消费组还没有消费者
 4) (integer) 0
 5) pending
 6) (integer) 0 # 该消费组没有正在处理的消息

消费

Stream 提供了 xreadgroup 指令可以进⾏消费组的组内消费，需
要提供消费组名称、消费者名称和起始消息 ID。它同 xread ⼀样，
也可以阻塞等待新消息。读到新消息后，对应的消息 ID 就会进⼊消

费者的 PEL(正在处理的消息) 结构⾥，客户端处理完毕后使⽤ xack
指令通知服务器，本条消息已经处理完毕，该消息 ID 就会从 PEL 中
移除。

> 号表示从当前消费组的 last_delivered_id 后⾯开始读
每当消费者读取⼀条消息，last_delivered_id 变量就会前
进
127.0.0.1:6379> xreadgroup GROUP cg1 c1 count 1
streams codehole >
1) 1) "codehole"
 2) 1) 1) 1527851486781-0
 2) 1) "name"
 2) "laoqian"
 3) "age"
 4) "30"
127.0.0.1:6379> xreadgroup GROUP cg1 c1 count 1
streams codehole >
1) 1) "codehole"
 2) 1) 1) 1527851493405-0
 2) 1) "name"
 2) "yurui"
 3) "age"
 4) "29"
127.0.0.1:6379> xreadgroup GROUP cg1 c1 count 2
streams codehole >
1) 1) "codehole"
 2) 1) 1) 1527851498956-0
 2) 1) "name"
 2) "xiaoqian"
 3) "age"
 4) "1"
 2) 1) 1527852774092-0
 2) 1) "name"

 2) "youming"
 3) "age"
 4) "60"
再继续读取，就没有新消息了
127.0.0.1:6379> xreadgroup GROUP cg1 c1 count 1
streams codehole >
(nil)
那就阻塞等待吧
127.0.0.1:6379> xreadgroup GROUP cg1 c1 block 0
count 1 streams codehole >
开启另⼀个窗⼝，往⾥塞消息
127.0.0.1:6379> xadd codehole * name lanying age
61
1527854062442-0
回到前⼀个窗⼝，发现阻塞解除，收到新消息了
127.0.0.1:6379> xreadgroup GROUP cg1 c1 block 0
count 1 streams codehole >
1) 1) "codehole"
 2) 1) 1) 1527854062442-0
 2) 1) "name"
 2) "lanying"
 3) "age"
 4) "61"
(36.54s)
观察消费组信息
127.0.0.1:6379> xinfo groups codehole
1) 1) name
 2) "cg1"
 3) consumers
 4) (integer) 1 # ⼀个消费者
 5) pending
 6) (integer) 5 # 共 5 条正在处理的信息还有没有 ack
2) 1) name

 2) "cg2"
 3) consumers
 4) (integer) 0 # 消费组 cg2 没有任何变化，因为前⾯
我们⼀直在操纵 cg1
 5) pending
 6) (integer) 0
如果同⼀个消费组有多个消费者，我们可以通过 xinfo
consumers 指令观察每个消费者的状态
127.0.0.1:6379> xinfo consumers codehole cg1 # ⽬
前还有 1 个消费者
1) 1) name
 2) "c1"
 3) pending
 4) (integer) 5 # 共 5 条待处理消息
 5) idle
 6) (integer) 418715 # 空闲了多⻓时间 ms 没有读取
消息了
接下来我们 ack ⼀条消息
127.0.0.1:6379> xack codehole cg1 1527851486781-0
(integer) 1
127.0.0.1:6379> xinfo consumers codehole cg1
1) 1) name
 2) "c1"
 3) pending
 4) (integer) 4 # 变成了 5 条
 5) idle
 6) (integer) 668504
下⾯ ack 所有消息
127.0.0.1:6379> xack codehole cg1 1527851493405-0
1527851498956-0 1527852774092-0 1527854062442-0
(integer) 4
127.0.0.1:6379> xinfo consumers codehole cg1
1) 1) name

 2) "c1"
 3) pending
 4) (integer) 0 # pel 空了
 5) idle
 6) (integer) 745505

Stream 消息太多怎么办?

读者很容易想到，要是消息积累太多，Stream 的链表岂不是很⻓，
内容会不会爆掉?xdel 指令⼜不会删除消息，它只是给消息做了个
标志位。

Redis ⾃然考虑到了这⼀点，所以它提供了⼀个定⻓ Stream 功能。
在 xadd 的指令提供⼀个定⻓⻓度 maxlen，就可以将⽼的消息⼲
掉，确保最多不超过指定⻓度。

127.0.0.1:6379> xlen codehole
(integer) 5
127.0.0.1:6379> xadd codehole maxlen 3 * name
xiaorui age 1
1527855160273-0
127.0.0.1:6379> xlen codehole
(integer) 3

我们看到 Stream 的⻓度被砍掉了。如果 Stream 在未来可以提供按
时间戳清理消息的规则那就更加完美了，但是⽬前还没有。

消息如果忘记 ACK 会怎样?

Stream 在每个消费者结构中保存了正在处理中的消息 ID 列表
PEL，如果消费者收到了消息处理完了但是没有回复 ack，就会导致
PEL 列表不断增⻓，如果有很多消费组的话，那么这个 PEL 占⽤的
内存就会放⼤。

PEL 如何避免消息丢失?

在客户端消费者读取 Stream 消息时，Redis 服务器将消息回复给客
户端的过程中，客户端突然断开了连接，消息就丢失了。但是 PEL
⾥已经保存了发出去的消息 ID。待客户端重新连上之后，可以再次
收到 PEL 中的消息 ID 列表。不过此时 xreadgroup 的起始消息 ID
不能为参数>，⽽必须是任意有效的消息 ID，⼀般将参数设为 0-
0，表示读取所有的 PEL 消息以及⾃last_delivered_id之后的
新消息。

Stream 的⾼可⽤

Stream 的⾼可⽤是建⽴主从复制基础上的，它和其它数据结构的复
制机制没有区别，也就是说在 Sentinel 和 Cluster 集群环境下
Stream 是可以⽀持⾼可⽤的。不过鉴于 Redis 的指令复制是异步
的，在 failover 发⽣时，Redis 可能会丢失极⼩部分数据，这点
Redis 的其它数据结构也是⼀样的。

分区 Partition

Redis 的服务器没有原⽣⽀持分区能⼒，如果想要使⽤分区，那就需
要分配多个 Stream，然后在客户端使⽤⼀定的策略来⽣产消息到不
同的 Stream。你也许会认为 Kafka 要先进很多，它是原⽣⽀持
Partition 的。关于这⼀点，我并不认同。记得 Kafka 的客户端也存
在 HashStrategy 么，因为它也是通过客户端的 hash 算法来将不同
的消息塞⼊不同分区的。

另外,Kafka 还⽀持动态增加分区数量的能⼒，但是这种调整能⼒也
是很蹩脚的，它不会把之前已经存在的内容进⾏ rehash，不会重新
分区历史数据。这种简单的动态调整的能⼒ Redis Stream 通过增加
新的 Stream 就可以做到。

⼩结

Stream 的消费模型借鉴了 Kafka 的消费分组的概念，它弥补了
Redis Pub/Sub 不能持久化消息的缺陷。但是它⼜不同于 kafka，
Kafka 的消息可以分 partition，⽽ Stream 不⾏。如果⾮要分
parition 的话，得在客户端做，提供不同的 Stream 名称，对消息
进⾏ hash 取模来选择往哪个 Stream ⾥塞。

如果读者稍微研究过 Redis 作者的另⼀个开源项⽬ Disque 的话，
这极可能是作者意识到 Disque 项⽬的活跃程度不够，所以将
Disque 的内容移植到了 Redis ⾥⾯。这只是本⼈的猜测，未必是作
者的初衷。如果读者有什么不同的想法，可以在评论区⼀起参与讨
论。

