
Redis 提供了⾮常丰富的指令集，但是⽤户依然不满⾜，希望可以⾃
定义扩充若⼲指令来完成⼀些特定领域的问题。Redis 为这样的⽤户
场景提供了 lua 脚本⽀持，⽤户可以向服务器发送 lua 脚本来执⾏
⾃定义动作，获取脚本的响应数据。Redis 服务器会单线程原⼦性执
⾏ lua 脚本，保证 lua 脚本在处理的过程中不会被任意其它请求打
断。

⽐如在分布式锁⼩节，我们提到了 del_if_equals 伪指令，它可以将
匹配 key 和删除 key 合并在⼀起原⼦性执⾏，Redis 原⽣没有提供
这样功能的指令，它可以使⽤ lua 脚本来完成。

if redis.call("get",KEYS[1]) == ARGV[1] then
 return redis.call("del",KEYS[1])
else
 return 0
end

那上⾯这个脚本如何执⾏呢？使⽤ EVAL 指令

127.0.0.1:6379> set foo bar
OK
127.0.0.1:6379> eval 'if
redis.call("get",KEYS[1]) == ARGV[1] then return
redis.call("del",KEYS[1]) else return 0 end' 1
foo bar
(integer) 1
127.0.0.1:6379> eval 'if
redis.call("get",KEYS[1]) == ARGV[1] then return
redis.call("del",KEYS[1]) else return 0 end' 1
foo bar
(integer) 0

EVAL 指令的第⼀个参数是脚本内容字符串，上⾯的例⼦我们将 lua
脚本压缩成⼀⾏以单引号围起来是为了⽅便命令⾏执⾏。然后是 key
的数量以及每个 key 串，最后是⼀系列附加参数字符串。附加参数
的数量不需要和 key 保持⼀致，可以完全没有附加参数。

EVAL SCRIPT KEY_NUM KEY1 KEY2 ... KEYN ARG1 ARG2
....

上⾯的例⼦中只有 1 个 key，它就是 foo，紧接着 bar 是唯⼀的附
加参数。在 lua 脚本中，数组下标是从 1 开始，所以通过 KEYS[1]
就可以得到 第⼀个 key，通过 ARGV[1] 就可以得到第⼀个附加参
数。redis.call 函数可以让我们调⽤ Redis 的原⽣指令，上⾯的代码
分别调⽤了 get 指令和 del 指令。return 返回的结果将会返回给客
户端。

SCRIPT LOAD 和 EVALSHA 指令

在上⾯的例⼦中，脚本的内容很短。如果脚本的内容很⻓，⽽且客户
端需要频繁执⾏，那么每次都需要传递冗⻓的脚本内容势必⽐较浪费
⽹络流量。所以 Redis 还提供了 SCRIPT LOAD 和 EVALSHA 指令

来解决这个问题。

SCRIPT LOAD 指令⽤于将客户端提供的 lua 脚本传递到服务器⽽不
执⾏，但是会得到脚本的唯⼀ ID，这个唯⼀ ID 是⽤来唯⼀标识服务
器缓存的这段 lua 脚本，它是由 Redis 使⽤ sha1 算法揉捏脚本内
容⽽得到的⼀个很⻓的字符串。有了这个唯⼀ ID，后⾯客户端就可
以通过 EVALSHA 指令反复执⾏这个脚本了。
我们知道 Redis 有 incrby 指令可以完成整数的⾃增操作，但是没有
提供⾃乘这样的指令。

incrby key value ==> $key = $key + value
mulby key value ==> $key = $key * value

下⾯我们使⽤ SCRIPT LOAD 和 EVALSHA 指令来完成⾃乘运算。

local curVal = redis.call("get", KEYS[1])
if curVal == false then
 curVal = 0
else
 curVal = tonumber(curVal)
end
curVal = curVal * tonumber(ARGV[1])
redis.call("set", KEYS[1], curVal)
return curVal

先将上⾯的脚本单⾏化，语句之间使⽤分号隔开

local curVal = redis.call("get", KEYS[1]); if
curVal == false then curVal = 0 else curVal =
tonumber(curVal) end; curVal = curVal *
tonumber(ARGV[1]); redis.call("set", KEYS[1],
curVal); return curVal

加载脚本

127.0.0.1:6379> script load 'local curVal =
redis.call("get", KEYS[1]); if curVal == false
then curVal = 0 else curVal = tonumber(curVal)
end; curVal = curVal * tonumber(ARGV[1]);
redis.call("set", KEYS[1], curVal); return
curVal'
"be4f93d8a5379e5e5b768a74e77c8a4eb0434441"

命令⾏输出了很⻓的字符串，它就是脚本的唯⼀标识，下⾯我们使⽤
这个唯⼀标识来执⾏指令

127.0.0.1:6379> evalsha
be4f93d8a5379e5e5b768a74e77c8a4eb0434441 1
notexistskey 5
(integer) 0
127.0.0.1:6379> evalsha
be4f93d8a5379e5e5b768a74e77c8a4eb0434441 1
notexistskey 5
(integer) 0
127.0.0.1:6379> set foo 1
OK
127.0.0.1:6379> evalsha
be4f93d8a5379e5e5b768a74e77c8a4eb0434441 1 foo 5
(integer) 5
127.0.0.1:6379> evalsha
be4f93d8a5379e5e5b768a74e77c8a4eb0434441 1 foo 5
(integer) 25

错误处理

上⾯的脚本参数要求传⼊的附加参数必须是整数，如果没有传递整数
会怎样呢？

127.0.0.1:6379> evalsha
be4f93d8a5379e5e5b768a74e77c8a4eb0434441 1 foo
bar
(error) ERR Error running script (call to
f_be4f93d8a5379e5e5b768a74e77c8a4eb0434441):
@user_script:1: user_script:1: attempt to perform
arithmetic on a nil value

可以看到客户端输出了服务器返回的通⽤错误消息，注意这是⼀个动
态抛出的异常，Redis 会保护主线程不会因为脚本的错误⽽导致服务
器崩溃，近似于在脚本的外围有⼀个很⼤的 try catch 语句包裹。在

lua 脚本执⾏的过程中遇到了错误，同 redis 的事务⼀样，那些通过
redis.call 函数已经执⾏过的指令对服务器状态产⽣影响是⽆法撤销
的，在编写 lua 代码时⼀定要⼩⼼，避免没有考虑到的判断条件导
致脚本没有完全执⾏。

如果读者对 lua 语⾔有所了解就知道 lua 原⽣没有提供 try catch 语
句，那上⾯提到的异常包裹语句究竟是⽤什么来实现的呢？lua 的替
代⽅案是内置了 pcall(f) 函数调⽤。pcall 的意思是 protected
call，它会让 f 函数运⾏在保护模式下，f 如果出现了错误，pcall 调
⽤会返回 false 和错误信息。⽽普通的 call(f) 调⽤在遇到错误时只
会向上抛出异常。在 Redis 的源码中可以看到 lua 脚本的执⾏被包
裹在 pcall 函数调⽤中。

// 编译期
int luaCreateFunction(client *c, lua_State *lua,
char *funcname, robj *body) {
 ...
 if (lua_pcall(lua,0,0,0)) {
 addReplyErrorFormat(c,"Error running script
(new function): %s\n",
 lua_tostring(lua,-1));
 lua_pop(lua,1);
 return C_ERR;
 }
 ...
}

// 运⾏期
void evalGenericCommand(client *c, int evalsha) {
 ...
 err = lua_pcall(lua,0,1,-2);
 ...
}

Redis 在 lua 脚本中除了提供了 redis.call 函数外，同样也提供了
redis.pcall 函数。前者遇到错误向上抛出异常，后者会返回错误信
息。使⽤时⼀定要注意 call 函数出错时会中断脚本的执⾏，为了保
证脚本的原⼦性，要谨慎使⽤。

错误传递

redis.call 函数调⽤会产⽣错误，脚本遇到这种错误会返回怎样的信
息呢？我们再看个例⼦

127.0.0.1:6379> hset foo x 1 y 2
(integer) 2
127.0.0.1:6379> eval 'return redis.call("incr",
"foo")' 0
(error) ERR Error running script (call to
f_8727c9c34a61783916ca488b366c475cb3a446cc):
@user_script:1: WRONGTYPE Operation against a key
holding the wrong kind of value

客户端输出的依然是⼀个通⽤的错误消息，⽽不是 incr 调⽤本应该
返回的 WRONGTYPE 类型的错误消息。Redis 内部在处理
redis.call 遇到错误时是向上抛出异常，外围的⽤户看不⻅的 pcall
调⽤捕获到脚本异常时会向客户端回复通⽤的错误信息。如果我们将
上⾯的 call 改成 pcall，结果就会不⼀样，它可以将内部指令返回的
特定错误向上传递。

127.0.0.1:6379> eval 'return redis.pcall("incr",
"foo")' 0
(error) WRONGTYPE Operation against a key holding
the wrong kind of value

脚本死循环怎么办？

Redis 的指令执⾏是个单线程，这个单线程还要执⾏来⾃客户端的
lua 脚本。如果 lua 脚本中来⼀个死循环，是不是 Redis 就完蛋
了？Redis 为了解决这个问题，它提供了 script kill 指令⽤于动态杀
死⼀个执⾏时间超时的 lua 脚本。不过 script kill 的执⾏有⼀个重
要的前提，那就是当前正在执⾏的脚本没有对 Redis 的内部数据状
态进⾏修改，因为 Redis 不允许 script kill 破坏脚本执⾏的原⼦
性。⽐如脚本内部使⽤了 redis.call("set", key, value) 修改了内部
的数据，那么 script kill 执⾏时服务器会返回错误。下⾯我们来尝
试以下 script kill 指令。

127.0.0.1:6379> eval 'while(true) do
print("hello") end' 0

eval 指令执⾏后，可以明显看出来 redis 卡死了，死活没有任何响
应，如果去观察 Redis 服务器⽇志可以看到⽇志在疯狂输出 hello
字符串。这时候就必须重新开启⼀个 redis-cli 来执⾏ script kill 指
令。

127.0.0.1:6379> script kill
OK
(2.58s)

再回过头看 eval 指令的输出

127.0.0.1:6379> eval 'while(true) do
print("hello") end' 0
(error) ERR Error running script (call to
f_d395649372f578b1a0d3a1dc1b2389717cadf403):
@user_script:1: Script killed by user with SCRIPT
KILL...
(6.99s)

看到这⾥细⼼的同学会注意到两个疑点，第⼀个是 script kill 指令
为什么执⾏了 2.58 秒，第⼆个是脚本都卡死了，Redis 哪⾥来的闲
功夫接受 script kill 指令。如果你⾃⼰尝试了在第⼆个窗⼝执⾏
redis-cli 去连接服务器，你还会发现第三个疑点，redis-cli 建⽴连
接有点慢，⼤约顿了有 1 秒左右。

Script Kill 的原理

下⾯我就要开始揭秘 kill 的原理了，lua 脚本引擎功能太强⼤了，它
提供了各式各样的钩⼦函数，它允许在内部虚拟机执⾏指令时运⾏钩
⼦代码。⽐如每执⾏ N 条指令执⾏⼀次某个钩⼦函数，Redis 正是
使⽤了这个钩⼦函数。

void evalGenericCommand(client *c, int evalsha) {
 ...
 // lua引擎每执⾏10w条指令，执⾏⼀次钩⼦函数
luaMaskCountHook

lua_sethook(lua,luaMaskCountHook,LUA_MASKCOUNT,10
0000);
 ...
}

Redis 在钩⼦函数⾥会忙⾥偷闲去处理客户端的请求，并且只有在发
现 lua 脚本执⾏超时之后才会去处理请求，这个超时时间默认是 5
秒。于是上⾯提出的三个疑点也就烟消云散了。

思考题

在延时队列⼩节，我们使⽤ zrangebyscore 和 zdel 两条指令来争
抢延时队列中的任务，通过 zdel 的返回值来决定是哪个客户端抢到
了任务，这意味着那些没有抢到任务的客户端会有这样⼀种感受
—— 到了嘴边的⾁(任务)最后还被别⼈抢⾛了，会很不爽。如果可以
使⽤ lua 脚本来实现争抢逻辑，将 zrangebyscore 和 zdel 指令原
⼦性执⾏就不会存在这种问题，读者可以尝试⼀下。

注：如果读者不熟悉 lua，建议先学习 lua 语⾔，lua 语⾔简单易
学，但是也不是⼏分钟就可以学会的事，需要再来⼀本⼩册的内容。
本⼩册专注 Redis，所以就不开⼤篇内容来细讲 lua 语⾔了，有需要
的朋友可以搜索相关在线教程。

