
源码 4：⻛驰电掣 —— 探索「快
速列表」内部

Redis 早期版本存储 list 列表数据结构使⽤的是压缩列表 ziplist 和
普通的双向链表 linkedlist，也就是元素少时⽤ ziplist，元素多时⽤
linkedlist。

// 链表的节点
struct listNode<T> {
 listNode* prev;
 listNode* next;
 T value;
}
// 链表
struct list {
 listNode *head;
 listNode *tail;
 long length;
}

考虑到链表的附加空间相对太⾼，prev 和 next 指针就要占去 16
个字节 (64bit 系统的指针是 8 个字节)，另外每个节点的内存都是
单独分配，会加剧内存的碎⽚化，影响内存管理效率。后续版本对列
表数据结构进⾏了改造，使⽤ quicklist 代替了 ziplist 和
linkedlist。

> rpush codehole go java python
(integer) 3
> debug object codehole
Value at:0x7fec2dc2bde0 refcount:1
encoding:quicklist serializedlength:31
lru:6101643 lru_seconds_idle:5 ql_nodes:1
ql_avg_node:3.00 ql_ziplist_max:-2
ql_compressed:0 ql_uncompressed_size:29

注意观察上⾯输出字段 encoding 的值。quicklist 是 ziplist 和
linkedlist 的混合体，它将 linkedlist 按段切分，每⼀段使⽤
ziplist 来紧凑存储，多个 ziplist 之间使⽤双向指针串接起来。

struct ziplist {
 ...
}
struct ziplist_compressed {
 int32 size;
 byte[] compressed_data;
}
struct quicklistNode {
 quicklistNode* prev;
 quicklistNode* next;
 ziplist* zl; // 指向压缩列表
 int32 size; // ziplist 的字节总数
 int16 count; // ziplist 中的元素数量
 int2 encoding; // 存储形式 2bit，原⽣字节数组还是
LZF 压缩存储
 ...
}
struct quicklist {
 quicklistNode* head;
 quicklistNode* tail;
 long count; // 元素总数
 int nodes; // ziplist 节点的个数
 int compressDepth; // LZF 算法压缩深度
 ...
}

上述代码简单地表示了 quicklist 的⼤致结构。为了进⼀步节约空
间，Redis 还会对 ziplist 进⾏压缩存储，使⽤ LZF 算法压缩，可以
选择压缩深度。

每个 ziplist 存多少元素？

quicklist 内部默认单个 ziplist ⻓度为 8k 字节，超出了这个字节
数，就会新起⼀个 ziplist。ziplist 的⻓度由配置参数list-max-
ziplist-size决定。

Lists are also encoded in a special way to save
a lot of space.
The number of entries allowed per internal list
node can be specified
as a fixed maximum size or a maximum number of
elements.
For a fixed maximum size, use -5 through -1,
meaning:
-5: max size: 64 Kb <-- not recommended for
normal workloads
-4: max size: 32 Kb <-- not recommended
-3: max size: 16 Kb <-- probably not
recommended
-2: max size: 8 Kb <-- good
-1: max size: 4 Kb <-- good
Positive numbers mean store up to _exactly_
that number of elements
per list node.
The highest performing option is usually -2 (8
Kb size) or -1 (4 Kb size),
but if your use case is unique, adjust the
settings as necessary.
list-max-ziplist-size -2

压缩深度

quicklist 默认的压缩深度是 0，也就是不压缩。压缩的实际深度由
配置参数list-compress-depth决定。为了⽀持快速的
push/pop 操作，quicklist 的⾸尾两个 ziplist 不压缩，此时深度
就是 1。如果深度为 2，就表示 quicklist 的⾸尾第⼀个 ziplist 以
及⾸尾第⼆个 ziplist 都不压缩。

扩展阅读

《ziplist、linkedlist 和 quicklist 的性能对⽐》
(https://matt.sh/redis-quicklist)

https://matt.sh/redis-quicklist

