
源码 9: 如履薄冰 —— 懒惰删除
的巨⼤牺牲

前⾯我们讲了 Redis 懒惰删除的特性，它是使⽤异步线程对已删除
的节点进⾏内存回收。但是还不够深⼊，所以本节我们要对异步线程
逻辑处理的细节进⾏分析，看看 Antirez 是如何实现异步线程处理
的。

异步线程在 Redis 内部有⼀个特别的名称，它就是BIO，全称
是Background IO，意思是在背后默默⼲活的 IO 线程。不过内存
回收本身并不是什么 IO 操作，只是 CPU 的计算消耗可能会⽐较⼤
⽽已。

懒惰删除的最初实现不是异步线程

Antirez 实现懒惰删除时，它并不是⼀开始就想到了异步线程。最初
的尝试是在主线程⾥，使⽤类似于字典渐进式搬迁那样来实现渐进式
删除回收。⽐如对于⼀个⾮常⼤的字典来说，懒惰删除是采⽤类似于
scan 操作的⽅法，通过遍历第⼀维数组来逐步删除回收第⼆维链表
的内容，等到所有链表都回收完了，再⼀次性回收第⼀维数组。这样
也可以达到删除⼤对象时不阻塞主线程的效果。

但是说起来容易做起来却很难。渐进式回收需要仔细控制回收频率，
它不能回收的太猛，这会导致 CPU 资源占⽤过多，也不能回收的蜗
⽜慢，因为内存回收不及时可能导致内存持续增⻓。

Antirez 需要采⽤合适的⾃适应算法来控制回收频率。他⾸先想到的
是检测内存增⻓的趋势是增⻓ (+1) 还是下降 (-1) 来渐进式调整回
收频率系数，这样的⾃适应算法实现也很简单。但是测试后发现在服



务繁忙的时候，QPS 会下降到正常情况下 65% 的⽔平，这点⾮常致
命。

所以 Antirez 才使⽤了如今使⽤的⽅案——异步线程。异步线程这
套⽅案就简单多了，释放内存不⽤为每种数据结构适配⼀套渐进式释
放策略，也不⽤搞个⾃适应算法来仔细控制回收频率。将对象从全局
字典中摘掉，然后往队列⾥⼀扔，主线程就⼲别的去了。异步线程从
队列⾥取出对象来，直接⾛正常的同步释放逻辑就可以了。

不过使⽤异步线程也是有代价的，主线程和异步线程之间在内存回收
器 (jemalloc) 的使⽤上存在竞争。这点竞争消耗是可以忽略不计
的，因为 Redis 的主线程在内存的分配与回收上花的时间相对整体
运算时间⽽⾔是极少的。

异步线程⽅案其实也相当复杂

刚才上⾯说异步线程⽅案很简单，为什么这⾥⼜说它很复杂呢？因为
有⼀点我们之前没有想到。这点⾮常可怕，严重阻碍了异步线程⽅案
的改造，那就是 Redis 的内部对象有共享机制。

⽐如集合的并集操作 sunionstore ⽤来将多个集合合并成⼀个新
集合



> sadd src1 value1 value2 value3
(integer) 3
> sadd src2 value3 value4 value5
(integer) 3
> sunionstore dest src1 src2
(integer) 5
> smembers dest
1) "value2"
2) "value3"
3) "value1"
4) "value4"
5) "value5"

我们看到新的集合包含了旧集合的所有元素。但是这⾥有⼀个我们没
看到的 trick。那就是底层的字符串对象被共享了。

为什么对象共享是懒惰删除的巨⼤障碍呢？因为懒惰删除相当于彻底
砍掉某个树枝，将它扔到异步删除队列⾥去。注意这⾥必须是彻底删
除，⽽不能藕断丝连。如果底层对象是共享的，那就做不到彻底删
除。



所以 Antirez 为了⽀持懒惰删除，将对象共享机制彻底抛弃，它将
这种对象结构称为「share-nothing」，也就是⽆共享设计。但是甩
掉对象共享谈何容易！这种对象共享机制散落在源代码的各个⻆落，
牵⼀发⽽动全身，改起来犹如在布满地雷的道路上⼩⼼翼翼地⾏⾛。

不过 Antirez 还是决⼼改了，他将这种改动描述为「绝望⽽疯
狂」，可⻅改动之⼤之深之险，前后花了好⼏周的时间才改完。不过
效果也是很明显的，对象的删除操作再也不会导致主线程卡顿了。

异步删除的实现

主线程需要将删除任务传递给异步线程，它是通过⼀个普通的双向链
表来传递的。因为链表需要⽀持多线程并发操作，所以它需要有锁来
保护。

执⾏懒惰删除时，Redis 将删除操作的相关参数封装成⼀
个bio_job结构，然后追加到链表尾部。异步线程通过遍历链表摘
取 job 元素来挨个执⾏异步任务。



struct bio_job {
    time_t time;  // 时间字段暂时没有使⽤，应该是预留的
    void *arg1, *arg2, *arg3;
};

我们注意到这个 job 结构有三个参数，为什么删除对象需要三个参
数呢？我们继续看代码：

    /* What we free changes depending on what 
arguments are set:
     * arg1 -> free the object at pointer.
     * arg2 & arg3 -> free two dictionaries (a 
Redis DB).
     * only arg3 -> free the skiplist. */
    if (job->arg1)
        // 释放⼀个普通对象，string/set/zset/hash 等
等，⽤于普通对象的异步删除
        lazyfreeFreeObjectFromBioThread(job-
>arg1);
    else if (job->arg2 && job->arg3)
        // 释放全局 redisDb 对象的 dict 字典和 
expires 字典，⽤于 flushdb
        lazyfreeFreeDatabaseFromBioThread(job-
>arg2,job->arg3);
    else if (job->arg3)
        // 释放 Cluster 的 slots_to_keys 对象，参⻅
源码篇的「基数树」⼩节
        lazyfreeFreeSlotsMapFromBioThread(job-
>arg3);

可以看到通过组合这三个参数可以实现不同结构的释放逻辑。接下来
我们继续追踪普通对象的异步删
除lazyfreeFreeObjectFromBioThread是如何进⾏的，请仔细



阅读代码注释。

void lazyfreeFreeObjectFromBioThread(robj *o) {
    decrRefCount(o); // 降低对象的引⽤计数，如果为零，
就释放
    atomicDecr(lazyfree_objects,1); // 
lazyfree_objects 为待释放对象的数量，⽤于统计
}

// 减少引⽤计数
void decrRefCount(robj *o) {
    if (o->refcount == 1) {
        // 该释放对象了
        switch(o->type) {
        case OBJ_STRING: freeStringObject(o); 
break;
        case OBJ_LIST: freeListObject(o); break;
        case OBJ_SET: freeSetObject(o); break;
        case OBJ_ZSET: freeZsetObject(o); break;
        case OBJ_HASH: freeHashObject(o); break;  
// 释放 hash 对象，继续追踪
        case OBJ_MODULE: freeModuleObject(o); 
break;
        case OBJ_STREAM: freeStreamObject(o); 
break;
        default: serverPanic("Unknown object 
type"); break;
        }
        zfree(o);
    } else {
        if (o->refcount <= 0) 
serverPanic("decrRefCount against refcount <= 
0");



        if (o->refcount != OBJ_SHARED_REFCOUNT) 
o->refcount--; // 引⽤计数减 1
    }
}

// 释放 hash 对象
void freeHashObject(robj *o) {
    switch (o->encoding) {
    case OBJ_ENCODING_HT:
        // 释放字典，我们继续追踪
        dictRelease((dict*) o->ptr);
        break;
    case OBJ_ENCODING_ZIPLIST:
        // 如果是压缩列表可以直接释放
        // 因为压缩列表是⼀整块字节数组
        zfree(o->ptr);
        break;
    default:
        serverPanic("Unknown hash encoding 
type");
        break;
    }
}

// 释放字典，如果字典正在迁移中，ht[0] 和 ht[1] 分别存储
旧字典和新字典
void dictRelease(dict *d)
{
    _dictClear(d,&d->ht[0],NULL); // 继续追踪
    _dictClear(d,&d->ht[1],NULL);
    zfree(d);
}



// 这⾥要释放 hashtable 了
// 需要遍历第⼀维数组，然后继续遍历第⼆维链表，双重循环
int _dictClear(dict *d, dictht *ht, 
void(callback)(void *)) {
    unsigned long i;

    /* Free all the elements */
    for (i = 0; i < ht->size && ht->used > 0; 
i++) {
        dictEntry *he, *nextHe;

        if (callback && (i & 65535) == 0) 
callback(d->privdata);

        if ((he = ht->table[i]) == NULL) 
continue;
        while(he) {
            nextHe = he->next;
            dictFreeKey(d, he); // 先释放 key
            dictFreeVal(d, he); // 再释放 value
            zfree(he); // 最后释放 entry
            ht->used--;
            he = nextHe;
        }
    }
    /* Free the table and the allocated cache 
structure */
    zfree(ht->table); // 可以回收第⼀维数组了
    /* Re-initialize the table */
    _dictReset(ht);
    return DICT_OK; /* never fails */
}



这些代码散落在多个不同的⽂件，我将它们凑到了⼀块便于读者阅
读。从代码中我们可以看到释放⼀个对象要深度调⽤⼀系列函数，每
种对象都有它独特的内存回收逻辑。

队列安全

前⾯提到任务队列是⼀个不安全的双向链表，需要使⽤锁来保护它。
当主线程将任务追加到队列之前它需要加锁，追加完毕后，再释放
锁，还需要唤醒异步线程，如果它在休眠的话。

void bioCreateBackgroundJob(int type, void *arg1, 
void *arg2, void *arg3) {
    struct bio_job *job = zmalloc(sizeof(*job));

    job->time = time(NULL);
    job->arg1 = arg1;
    job->arg2 = arg2;
    job->arg3 = arg3;
    pthread_mutex_lock(&bio_mutex[type]); // 加锁
    listAddNodeTail(bio_jobs[type],job); // 追加任
务
    bio_pending[type]++; // 计数
    pthread_cond_signal(&bio_newjob_cond[type]); 
// 唤醒异步线程
    pthread_mutex_unlock(&bio_mutex[type]); // 释
放锁
}

异步线程需要对任务队列进⾏轮训处理，依次从链表表头摘取元素逐
个处理。摘取元素的时候也需要加锁，摘出来之后再解锁。如果⼀个
元素都没有，它需要等待，直到主线程来唤醒它继续⼯作。

// 异步线程执⾏逻辑



void *bioProcessBackgroundJobs(void *arg) {
...
    pthread_mutex_lock(&bio_mutex[type]); // 先加
锁
    ...
    // 循环处理
    while(1) {
        listNode *ln;

        /* The loop always starts with the lock 
hold. */
        if (listLength(bio_jobs[type]) == 0) {
            // 对列空，那就睡觉吧
            
pthread_cond_wait(&bio_newjob_cond[type],&bio_mut
ex[type]);
            continue;
        }
        /* Pop the job from the queue. */
        ln = listFirst(bio_jobs[type]); // 获取队列
头元素
        job = ln->value;
        /* It is now possible to unlock the 
background system as we know have
         * a stand alone job structure to 
process.*/
        pthread_mutex_unlock(&bio_mutex[type]); 
// 释放锁

        // 这⾥是处理过程，为了省纸，就略去了
        ...
        
        // 释放任务对象



        zfree(job);

        ...
        
        // 再次加锁继续处理下⼀个元素
        pthread_mutex_lock(&bio_mutex[type]);
        // 因为任务已经处理完了，可以放⼼从链表中删除节点
了
        listDelNode(bio_jobs[type],ln);
        bio_pending[type]--; // 计数减 1
    }

研究完这些加锁解锁的代码后，我开始有点当⼼主线程的性能。我们
都知道加锁解锁是⼀个相对⽐较耗时的操作，尤其是悲观锁最为耗
时。如果删除很频繁，主线程岂不是要频繁加锁解锁。所以这⾥肯定
还有优化空间，Java 的 ConcurrentLinkQueue 就没有使⽤这样粗
粒度的悲观锁，它优先使⽤ cas 来控制并发。

思考

1. Redis 还有其它地⽅⽤到了对象共享机制么？
2. Java 的 ConcurrentLinkQueue 具体是如何实现的？


