
应⽤ 6：断尾求⽣ —— 简单限流
限流算法在分布式领域是⼀个经常被提起的话题，当系统的处理能⼒
有限时，如何阻⽌计划外的请求继续对系统施压，这是⼀个需要重视
的问题。⽼钱在这⾥⽤ “断尾求⽣” 形容限流背后的思想，当然还有
很多成语也表达了类似的意思，如弃卒保⻋、壮⼠断腕等等。

除了控制流量，限流还有⼀个应⽤⽬的是⽤于控制⽤户⾏为，避免垃
圾请求。⽐如在 UGC 社区，⽤户的发帖、回复、点赞等⾏为都要严
格受控，⼀般要严格限定某⾏为在规定时间内允许的次数，超过了次
数那就是⾮法⾏为。对⾮法⾏为，业务必须规定适当的惩处策略。

如何使⽤ Redis 来实现简单限流策略？

⾸先我们来看⼀个常⻅ 的简单的限流策略。系统要限定⽤户的某个
⾏为在指定的时间⾥只能允许发⽣ N 次，如何使⽤ Redis 的数据结
构来实现这个限流的功能？

我们先定义这个接⼝，理解了这个接⼝的定义，读者就应该能明⽩我
们期望达到的功能。

指定⽤户 user_id 的某个⾏为 action_key 在特定的时间内
period 只允许发⽣⼀定的次数 max_count
def is_action_allowed(user_id, action_key,
period, max_count):
 return True
调⽤这个接⼝ , ⼀分钟内只允许最多回复 5 个帖⼦
can_reply = is_action_allowed("laoqian", "reply",
60, 5)
if can_reply:
 do_reply()
else:
 raise ActionThresholdOverflow()

先不要继续往后看，想想如果让你来实现，你该怎么做？

解决⽅案

这个限流需求中存在⼀个滑动时间窗⼝，想想 zset 数据结构的
score 值，是不是可以通过 score 来圈出这个时间窗⼝来。⽽且我
们只需要保留这个时间窗⼝，窗⼝之外的数据都可以砍掉。那这个
zset 的 value 填什么⽐较合适呢？它只需要保证唯⼀性即可，⽤
uuid 会⽐较浪费空间，那就改⽤毫秒时间戳吧。

如图所示，⽤⼀个 zset 结构记录⽤户的⾏为历史，每⼀个⾏为都会
作为 zset 中的⼀个 key 保存下来。同⼀个⽤户同⼀种⾏为⽤⼀个
zset 记录。

为节省内存，我们只需要保留时间窗⼝内的⾏为记录，同时如果⽤户
是冷⽤户，滑动时间窗⼝内的⾏为是空记录，那么这个 zset 就可以
从内存中移除，不再占⽤空间。

通过统计滑动窗⼝内的⾏为数量与阈值 max_count 进⾏⽐较就可以
得出当前的⾏为是否允许。⽤代码表示如下：

coding: utf8

import time
import redis

client = redis.StrictRedis()

def is_action_allowed(user_id, action_key,
period, max_count):
 key = 'hist:%s:%s' % (user_id, action_key)
 now_ts = int(time.time() * 1000) # 毫秒时间戳
 with client.pipeline() as pipe: # client 是
StrictRedis 实例
 # 记录⾏为
 pipe.zadd(key, now_ts, now_ts) # value 和
score 都使⽤毫秒时间戳
 # 移除时间窗⼝之前的⾏为记录，剩下的都是时间窗⼝
内的
 pipe.zremrangebyscore(key, 0, now_ts -
period * 1000)
 # 获取窗⼝内的⾏为数量
 pipe.zcard(key)
 # 设置 zset 过期时间，避免冷⽤户持续占⽤内存
 # 过期时间应该等于时间窗⼝的⻓度，再多宽限 1s
 pipe.expire(key, period + 1)
 # 批量执⾏
 _, _, current_count, _ = pipe.execute()
 # ⽐较数量是否超标
 return current_count <= max_count

for i in range(20):
 print is_action_allowed("laoqian", "reply",
60, 5)

Java 版：

public class SimpleRateLimiter {

 private Jedis jedis;

 public SimpleRateLimiter(Jedis jedis) {
 this.jedis = jedis;
 }

 public boolean isActionAllowed(String userId,
String actionKey, int period, int maxCount) {
 String key = String.format("hist:%s:%s",
userId, actionKey);
 long nowTs = System.currentTimeMillis();
 Pipeline pipe = jedis.pipelined();
 pipe.multi();
 pipe.zadd(key, nowTs, "" + nowTs);
 pipe.zremrangeByScore(key, 0, nowTs - period
* 1000);
 Response<Long> count = pipe.zcard(key);
 pipe.expire(key, period + 1);
 pipe.exec();
 pipe.close();
 return count.get() <= maxCount;
 }

 public static void main(String[] args) {
 Jedis jedis = new Jedis();
 SimpleRateLimiter limiter = new
SimpleRateLimiter(jedis);
 for(int i=0;i<20;i++) {

System.out.println(limiter.isActionAllowed("laoqi
an", "reply", 60, 5));
 }
 }

}

这段代码还是略显复杂，需要读者花⼀定的时间好好啃。它的整体思
路就是：每⼀个⾏为到来时，都维护⼀次时间窗⼝。将时间窗⼝外的
记录全部清理掉，只保留窗⼝内的记录。zset 集合中只有 score 值
⾮常重要，value 值没有特别的意义，只需要保证它是唯⼀的就可以
了。

因为这⼏个连续的 Redis 操作都是针对同⼀个 key 的，使⽤
pipeline 可以显著提升 Redis 存取效率。但这种⽅案也有缺点，因
为它要记录时间窗⼝内所有的⾏为记录，如果这个量很⼤，⽐如限定
60s 内操作不得超过 100w 次这样的参数，它是不适合做这样的限
流的，因为会消耗⼤量的存储空间。

⼩结

本节介绍的是限流策略的简单应⽤，它仍然有较⼤的提升空间，适⽤
的场景也有限。为了解决简单限流的缺点，下⼀节我们将引⼊⾼级限
流算法——漏⽃限流。

