
应⽤ 8：近⽔楼台 ——
GeoHash
Redis 在 3.2 版本以后增加了地理位置 GEO 模块，意味着我们可以
使⽤ Redis 来实现摩拜单⻋「附近的 Mobike」、美团和饿了么
「附近的餐馆」这样的功能了。

⽤数据库来算附近的⼈

地图元素的位置数据使⽤⼆维的经纬度表示，经度范围 (-180,
180]，纬度范围 (-90, 90]，纬度正负以⾚道为界，北正南负，经度
正负以本初⼦午线 (英国格林尼治天⽂台) 为界，东正⻄负。⽐如掘
⾦办公室在望京 SOHO，它的经纬度坐标是
(116.48105,39.996794)，都是正数，因为中国位于东北半球。

当两个元素的距离不是很远时，可以直接使⽤勾股定理就能算得元素
之间的距离。我们平时使⽤的「附近的⼈」的功能，元素距离都不是
很⼤，勾股定理算距离⾜矣。不过需要注意的是，经纬度坐标的密度
不⼀样 (地球是⼀个椭圆)，勾股定律计算平⽅差时之后再求和时，需
要按⼀定的系数⽐加权求和，如果不求精确的话，也可以不必加权。

问题：经度总共360度，维度总共只有180度，为什么距离密度不是
2:1？

现在，如果要计算「附近的⼈」，也就是给定⼀个元素的坐标，然后
计算这个坐标附近的其它元素，按照距离进⾏排序，该如何下⼿？

如果现在元素的经纬度坐标使⽤关系数据库 (元素 id, 经度 x, 纬度
y) 存储，你该如何计算？

⾸先，你不可能通过遍历来计算所有的元素和⽬标元素的距离然后再
进⾏排序，这个计算量太⼤了，性能指标肯定⽆法满⾜。⼀般的⽅法
都是通过矩形区域来限定元素的数量，然后对区域内的元素进⾏全量
距离计算再排序。这样可以明显减少计算量。如何划分矩形区域呢？
可以指定⼀个半径 r，使⽤⼀条 SQL 就可以圈出来。当⽤户对筛出
来的结果不满意，那就扩⼤半径继续筛选。

select id from positions where x0-r < x < x0+r
and y0-r < y < y0+r

为了满⾜⾼性能的矩形区域算法，数据表需要在经纬度坐标加上双向
复合索引 (x, y)，这样可以最⼤优化查询性能。

但是数据库查询性能毕竟有限，如果「附近的⼈」查询请求⾮常多，
在⾼并发场合，这可能并不是⼀个很好的⽅案。

GeoHash 算法

业界⽐较通⽤的地理位置距离排序算法是 GeoHash 算法，Redis 也
使⽤ GeoHash 算法。GeoHash 算法将⼆维的经纬度数据映射到⼀
维的整数，这样所有的元素都将在挂载到⼀条线上，距离靠近的⼆维
坐标映射到⼀维后的点之间距离也会很接近。当我们想要计算「附近
的⼈时」，⾸先将⽬标位置映射到这条线上，然后在这个⼀维的线上
获取附近的点就⾏了。

那这个映射算法具体是怎样的呢？它将整个地球看成⼀个⼆维平⾯，
然后划分成了⼀系列正⽅形的⽅格，就好⽐围棋棋盘。所有的地图元
素坐标都将放置于唯⼀的⽅格中。⽅格越⼩，坐标越精确。然后对这
些⽅格进⾏整数编码，越是靠近的⽅格编码越是接近。那如何编码
呢？⼀个最简单的⽅案就是切蛋糕法。设想⼀个正⽅形的蛋糕摆在你
⾯前，⼆⼑下去均分分成四块⼩正⽅形，这四个⼩正⽅形可以分别标
记为 00,01,10,11 四个⼆进制整数。然后对每⼀个⼩正⽅形继续⽤
⼆⼑法切割⼀下，这时每个⼩⼩正⽅形就可以使⽤ 4bit 的⼆进制整
数予以表示。然后继续切下去，正⽅形就会越来越⼩，⼆进制整数也
会越来越⻓，精确度就会越来越⾼。

上⾯的例⼦中使⽤的是⼆⼑法，真实算法中还会有很多其它⼑法，最
终编码出来的整数数字也都不⼀样。

编码之后，每个地图元素的坐标都将变成⼀个整数，通过这个整数可
以还原出元素的坐标，整数越⻓，还原出来的坐标值的损失程度就越
⼩。对于「附近的⼈」这个功能⽽⾔，损失的⼀点精确度可以忽略不
计。

GeoHash 算法会继续对这个整数做⼀次 base32 编码 (0-9,a-z 去
掉 a,i,l,o 四个字⺟) 变成⼀个字符串。在 Redis ⾥⾯，经纬度使⽤
52 位的整数进⾏编码，放进了 zset ⾥⾯，zset 的 value 是元素的
key，score 是 GeoHash 的 52 位整数值。zset 的 score 虽然是浮
点数，但是对于 52 位的整数值，它可以⽆损存储。

在使⽤ Redis 进⾏ Geo 查询时，我们要时刻想到它的内部结构实际

上只是⼀个 zset(skiplist)。通过 zset 的 score 排序就可以得到坐
标附近的其它元素 (实际情况要复杂⼀些，不过这样理解⾜够了)，通
过将 score 还原成坐标值就可以得到元素的原始坐标。

Redis 的 Geo 指令基本使⽤

Redis 提供的 Geo 指令只有 6 个，读者们瞬间就可以掌握。使⽤
时，读者务必再次想起，它只是⼀个普通的 zset 结构。

增加

geoadd 指令携带集合名称以及多个经纬度名称三元组，注意这⾥可
以加⼊多个三元组

127.0.0.1:6379> geoadd company 116.48105
39.996794 juejin
(integer) 1
127.0.0.1:6379> geoadd company 116.514203
39.905409 ireader
(integer) 1
127.0.0.1:6379> geoadd company 116.489033
40.007669 meituan
(integer) 1
127.0.0.1:6379> geoadd company 116.562108
39.787602 jd 116.334255 40.027400 xiaomi
(integer) 2

也许你会问为什么 Redis 没有提供 geo 删除指令？前⾯我们提到
geo 存储结构上使⽤的是 zset，意味着我们可以使⽤ zset 相关的
指令来操作 geo 数据，所以删除指令可以直接使⽤ zrem 指令即
可。

距离

geodist 指令可以⽤来计算两个元素之间的距离，携带集合名称、2
个名称和距离单位。

127.0.0.1:6379> geodist company juejin ireader km
"10.5501"
127.0.0.1:6379> geodist company juejin meituan km
"1.3878"
127.0.0.1:6379> geodist company juejin jd km
"24.2739"
127.0.0.1:6379> geodist company juejin xiaomi km
"12.9606"
127.0.0.1:6379> geodist company juejin juejin km
"0.0000"

我们可以看到掘⾦离美团最近，因为它们都在望京。距离单位可以是
m、km、ml、ft，分别代表⽶、千⽶、英⾥和尺。

获取元素位置

geopos 指令可以获取集合中任意元素的经纬度坐标，可以⼀次获取
多个。

127.0.0.1:6379> geopos company juejin
1) 1) "116.48104995489120483"
 2) "39.99679348858259686"
127.0.0.1:6379> geopos company ireader
1) 1) "116.5142020583152771"
 2) "39.90540918662494363"
127.0.0.1:6379> geopos company juejin ireader
1) 1) "116.48104995489120483"
 2) "39.99679348858259686"
2) 1) "116.5142020583152771"
 2) "39.90540918662494363"

我们观察到获取的经纬度坐标和 geoadd 进去的坐标有轻微的误
差，原因是 geohash 对⼆维坐标进⾏的⼀维映射是有损的，通过映
射再还原回来的值会出现较⼩的差别。对于「附近的⼈」这种功能来
说，这点误差根本不是事。

获取元素的 hash 值

geohash 可以获取元素的经纬度编码字符串，上⾯已经提到，它是
base32 编码。
你可以使⽤这个编码值去 http://geohash.org/${hash}中进⾏直接
定位，它是 geohash 的标准编码值。

127.0.0.1:6379> geohash company ireader
1) "wx4g52e1ce0"
127.0.0.1:6379> geohash company juejin
1) "wx4gd94yjn0"

让我们打开地址 http://geohash.org/wx4g52e1ce0，观察地图指
向的位置是否正确。

很好，就是这个位置，⾮常准确。

附近的公司

georadiusbymember 指令是最为关键的指令，它可以⽤来查询指
定元素附近的其它元素，它的参数⾮常复杂。

范围 20 公⾥以内最多 3 个元素按距离正排，它不会排除⾃身
127.0.0.1:6379> georadiusbymember company ireader
20 km count 3 asc
1) "ireader"
2) "juejin"
3) "meituan"
范围 20 公⾥以内最多 3 个元素按距离倒排
127.0.0.1:6379> georadiusbymember company ireader
20 km count 3 desc
1) "jd"
2) "meituan"
3) "juejin"
三个可选参数 withcoord withdist withhash ⽤来携带附
加参数
withdist 很有⽤，它可以⽤来显示距离
127.0.0.1:6379> georadiusbymember company ireader
20 km withcoord withdist withhash count 3 asc
1) 1) "ireader"
 2) "0.0000"
 3) (integer) 4069886008361398
 4) 1) "116.5142020583152771"
 2) "39.90540918662494363"
2) 1) "juejin"
 2) "10.5501"
 3) (integer) 4069887154388167
 4) 1) "116.48104995489120483"
 2) "39.99679348858259686"
3) 1) "meituan"
 2) "11.5748"
 3) (integer) 4069887179083478
 4) 1) "116.48903220891952515"
 2) "40.00766997707732031"

除了 georadiusbymember 指令根据元素查询附近的元素，Redis
还提供了根据坐标值来查询附近的元素，这个指令更加有⽤，它可以
根据⽤户的定位来计算「附近的⻋」，「附近的餐馆」等。它的参数
和 georadiusbymember 基本⼀致，除了将⽬标元素改成经纬度坐
标值。

127.0.0.1:6379> georadius company 116.514202
39.905409 20 km withdist count 3 asc
1) 1) "ireader"
 2) "0.0000"
2) 1) "juejin"
 2) "10.5501"
3) 1) "meituan"
 2) "11.5748"

⼩结 & 注意事项

在⼀个地图应⽤中，⻋的数据、餐馆的数据、⼈的数据可能会有百万
千万条，如果使⽤ Redis 的 Geo 数据结构，它们将全部放在⼀个
zset 集合中。在 Redis 的集群环境中，集合可能会从⼀个节点迁移
到另⼀个节点，如果单个 key 的数据过⼤，会对集群的迁移⼯作造
成较⼤的影响，在集群环境中单个 key 对应的数据量不宜超过
1M，否则会导致集群迁移出现卡顿现象，影响线上服务的正常运
⾏。

所以，这⾥建议 Geo 的数据使⽤单独的 Redis 实例部署，不使⽤集
群环境。

如果数据量过亿甚⾄更⼤，就需要对 Geo 数据进⾏拆分，按国家拆
分、按省拆分，按市拆分，在⼈⼝特⼤城市甚⾄可以按区拆分。这样
就可以显著降低单个 zset 集合的⼤⼩。

