
1. 什什么是线程？
1、线程是操作系统能够进⾏行行运算调度的最⼩小单位，它被包含在进程之中，是进程中的实际运作单位，可以使⽤用多线程对

进⾏行行运算提速。

⽐如，如果⼀个线程完成⼀个任务要100毫秒，那么⽤⼗个线程完成改任务只需10毫秒

2. 什什么是线程安全和线程不不安全？
1、线程安全

线程安全: 就是多线程访问时，采⽤用了了加锁机制，当⼀一个线程访问该类的某个数据时，进⾏行行保护，其他线程不不能进⾏行行
访问，直到该线程读取完，其他线程才可使⽤用。不不会出现数据不不⼀一致或者数据污染。

Vector 是⽤用同步⽅方法来实现线程安全的, ⽽而和它相似的ArrayList不不是线程安全的。
2、线程不不安全

线程不不安全：就是不不提供数据访问保护，有可能出现多个线程先后更更改数据造成所得到的数据是脏数据

线程安全问题都是由全局变量量及静态变量量引起的。

若每个线程中对全局变量量、静态变量量只有读操作，⽽而⽆无写操作，⼀一般来说，这个全局变量量是线程安全的；若有多个

线程同时执⾏行行写操作，⼀一般都需要考虑线程同步，否则的话就可能影响线程安全。

3. 什什么是⾃自旋锁？
⾃自旋锁是SMP架构中的⼀一种low-level的同步机制。
1、当线程A想要获取⼀一把⾃自旋锁⽽而该锁⼜又被其它线程锁持有时，线程A会在⼀一个循环中⾃自旋以检测锁是不不是已经可⽤用了了。
2、⾃自选锁需要注意：

由于⾃自旋时不不释放CPU，因⽽而持有⾃自旋锁的线程应该尽快释放⾃自旋锁，否则等待该⾃自旋锁的线程会⼀一直在那⾥里里⾃自
旋，这就会浪费CPU时间。
持有⾃自旋锁的线程在sleep之前应该释放⾃自旋锁以便便其它线程可以获得⾃自旋锁。

3、⽬目前的JVM实现⾃自旋会消耗CPU，如果⻓长时间不不调⽤用doNotify⽅方法，doWait⽅方法会⼀一直⾃自旋，CPU会消耗太⼤大
4、⾃自旋锁⽐比较适⽤用于锁使⽤用者保持锁时间⽐比较短的情况，这种情况⾃自旋锁的效率⽐比较⾼高。
5、⾃自旋锁是⼀一种对多处理理器器相当有效的机制，⽽而在单处理理器器⾮非抢占式的系统中基本上没有作⽤用。

4. 什什么是CAS？
1、CAS（compare and swap）的缩写，中⽂文翻译成⽐比较并交换。
2、CAS 不不通过JVM,直接利利⽤用java本地⽅方 JNI（Java Native Interface为JAVA本地调⽤用）,直接调⽤用CPU 的cmpxchg（是

汇编指令）指令。

3、利利⽤用CPU的CAS指令，同时借助JNI来完成Java的⾮非阻塞算法,实现原⼦子操作。其它原⼦子操作都是利利⽤用类似的特性完成
的。

4、整个java.util.concurrent都是建⽴立在CAS之上的，因此对于synchronized阻塞算法，J.U.C在性能上有了了很⼤大的提升。
5、CAS是项乐观锁技术，当多个线程尝试使⽤用CAS同时更更新同⼀一个变量量时，只有其中⼀一个线程能更更新变量量的值，⽽而其它

线程都失败，失败的线程并不不会被挂起，⽽而是被告知这次竞争中失败，并可以再次尝试。

1、使⽤CAS在线程冲突严重时，会⼤幅降低程序性能；CAS只适合于线程冲突较少的情况使⽤。
2、synchronized在jdk1.6之后，已经改进优化。synchronized的底层实现主要依靠Lock-Free的队列，基本思路是⾃旋后阻塞，竞
争切换后继续竞争锁，稍微牺牲了公平性，但获得了⾼吞吐量。在线程冲突较少的情况下，可以获得和CAS类似的性能；⽽线
程冲突严重的情况下，性能远⾼于CAS。

5. 什什么是乐观锁和悲观锁？
1、悲观锁

Java在JDK1.5之前都是靠synchronized关键字保证同步的，这种通过使⽤用⼀一致的锁定协议来协调对共享状态的访
问，可以确保⽆无论哪个线程持有共享变量量的锁，都采⽤用独占的⽅方式来访问这些变量量。独占锁其实就是⼀一种悲观锁，所以

可以说synchronized是悲观锁。
2、乐观锁

乐观锁（ Optimistic Locking）其实是⼀一种思想。相对悲观锁⽽而⾔言，乐观锁假设认为数据⼀一般情况下不不会造成冲突，
所以在数据进⾏行行提交更更新的时候，才会正式对数据的冲突与否进⾏行行检测，如果发现冲突了了，则让返回⽤用户错误的信息，

让⽤用户决定如何去做。

memcached使⽤了cas乐观锁技术保证数据⼀致性。

6. 什什么是AQS？
1、AbstractQueuedSynchronizer简称AQS，是⼀一个⽤用于构建锁和同步容器器的框架。事实上concurrent包内许多类都是基
于AQS构建，例例如ReentrantLock，Semaphore，CountDownLatch，ReentrantReadWriteLock，FutureTask等。AQS解
决了了在实现同步容器器时设计的⼤大量量细节问题。

https://note.youdao.com/item/%E9%9D%9E%E6%8A%A2%E5%8D%A0%E5%BC%8F

2、AQS使⽤用⼀一个FIFO的队列列表示排队等待锁的线程，队列列头节点称作“哨兵节点”或者“哑节点”，它不不与任何线程关联。
其他的节点与等待线程关联，每个节点维护⼀一个等待状态waitStatus。

7. 什什么是原⼦子操作？在Java Concurrency API中有哪些原⼦子类(atomic classes)？
1、原⼦子操作是指⼀一个不不受其他操作影响的操作任务单元。原⼦子操作是在多线程环境下避免数据不不⼀一致必须的⼿手段。
2、int++并不不是⼀一个原⼦子操作，所以当⼀一个线程读取它的值并加1时，另外⼀一个线程有可能会读到之前的值，这就会引发
错误。

3、为了了解决这个问题，必须保证增加操作是原⼦子的，在JDK1.5之前我们可以使⽤用同步技术来做到这⼀一点。
到JDK1.5，java.util.concurrent.atomic包提供了了int和long类型的装类，它们可以⾃自动的保证对于他们的操作是原⼦子的并
且不不需要使⽤用同步。

8. 什什么是Executors框架？
Java通过Executors提供四种线程池，分别为：

1、newCachedThreadPool创建⼀一个可缓存线程池，如果线程池⻓长度超过处理理需要，可灵活回收空闲线程，若⽆无可
回收，则新建线程。

2、newFixedThreadPool 创建⼀一个定⻓长线程池，可控制线程最⼤大并发数，超出的线程会在队列列中等待。
3、newScheduledThreadPool 创建⼀一个定⻓长线程池，⽀支持定时及周期性任务执⾏行行。
4、newSingleThreadExecutor 创建⼀一个单线程化的线程池，它只会⽤用唯⼀一的⼯工作线程来执⾏行行任务，保证所有任务
按照指定顺序(FIFO, LIFO, 优先级)执⾏行行。

9. 什什么是阻塞队列列？如何使⽤用阻塞队列列来实现⽣生产者-消费者模型？

1、JDK7提供了了7个阻塞队列列。（也属于并发容器器）

i. ArrayBlockingQueue ：⼀一个由数组结构组成的有界阻塞队列列。

ii. LinkedBlockingQueue ：⼀一个由链表结构组成的有界阻塞队列列。

iii. PriorityBlockingQueue ：⼀一个⽀支持优先级排序的⽆无界阻塞队列列。

iv. DelayQueue：⼀一个使⽤用优先级队列列实现的⽆无界阻塞队列列。

v. SynchronousQueue：⼀一个不不存储元素的阻塞队列列。

vi. LinkedTransferQueue：⼀一个由链表结构组成的⽆无界阻塞队列列。

vii. LinkedBlockingDeque：⼀一个由链表结构组成的双向阻塞队列列。
2、概念：阻塞队列列是⼀一个在队列列基础上⼜又⽀支持了了两个附加操作的队列列。
3、2个附加操作：

⽀支持阻塞的插⼊入⽅方法：队列列满时，队列列会阻塞插⼊入元素的线程，直到队列列不不满。

⽀支持阻塞的移除⽅方法：队列列空时，获取元素的线程会等待队列列变为⾮非空。

10. 什什么是Callable和Future?
1、Callable 和 Future 是⽐比较有趣的⼀一对组合。当我们需要获取线程的执⾏行行结果时，就需要⽤用到它们。Callable⽤用于产⽣生
结果，Future⽤用于获取结果。
2、Callable接⼝口使⽤用泛型去定义它的返回类型。Executors类提供了了⼀一些有⽤用的⽅方法去在线程池中执⾏行行Callable内的任
务。由于Callable任务是并⾏行行的，必须等待它返回的结果。java.util.concurrent.Future对象解决了了这个问题。
3、在线程池提交Callable任务后返回了了⼀一个Future对象，使⽤用它可以知道Callable任务的状态和得到Callable返回的执⾏行行
结果。Future提供了了get()⽅方法，等待Callable结束并获取它的执⾏行行结果。

11. 什什么是FutureTask?
1、FutureTask可⽤用于异步获取执⾏行行结果或取消执⾏行行任务的场景。通过传⼊入Runnable或者Callable的任务给FutureTask，
直接调⽤用其run⽅方法或者放⼊入线程池执⾏行行，之后可以在外部通过FutureTask的get⽅方法异步获取执⾏行行结果，因此，
FutureTask⾮非常适合⽤用于耗时的计算，主线程可以在完成⾃自⼰己的任务后，再去获取结果。另外，FutureTask还可以确保即
使调⽤用了了多次run⽅方法，它都只会执⾏行行⼀一次Runnable或者Callable任务，或者通过cancel取消FutureTask的执⾏行行等。
2、futuretask可⽤用于执⾏行行多任务、以及避免⾼高并发情况下多次创建数据机锁的出现。

12. 什什么是同步容器器和并发容器器的实现？
1、同步容器器

1、主要代表有Vector和Hashtable，以及Collections.synchronizedXxx等。
2、锁的粒度为当前对象整体。
3、迭代器器是及时失败的，即在迭代的过程中发现被修改，就会抛出ConcurrentModificationException。

2、并发容器器
1、主要代表有ConcurrentHashMap、CopyOnWriteArrayList、ConcurrentSkipListMap、ConcurrentSkipListSet。
2、锁的粒度是分散的、细粒度的，即读和写是使⽤用不不同的锁。
4、迭代器器具有弱⼀一致性，即可以容忍并发修改，不不会抛出ConcurrentModificationException。

ConcurrentHashMap
采⽤分段锁技术，同步容器中，是⼀个容器⼀个锁，但在ConcurrentHashMap中，会将hash表的数组部分分成若⼲段，每段维
护⼀个锁，以达到⾼效的并发访问；

13. 什什么是多线程的上下⽂文切换？
1、多线程：是指从软件或者硬件上实现多个线程的并发技术。
2、多线程的好处：

i. 使⽤用多线程可以把程序中占据时间⻓长的任务放到后台去处理理，如图⽚片、视屏的下载

ii. 发挥多核处理理器器的优势，并发执⾏行行让系统运⾏行行的更更快、更更流畅，⽤用户体验更更好

3、多线程的缺点：
1. ⼤大量量的线程降低代码的可读性；

2. 更更多的线程需要更更多的内存空间

3. 当多个线程对同⼀一个资源出现争夺时候要注意线程安全的问题。

4、多线程的上下⽂文切换：
CPU通过时间⽚片分配算法来循环执⾏行行任务，当前任务执⾏行行⼀一个时间⽚片后会切换到下⼀一个任务。但是，在切换前会保
存上⼀一个任务的状态，以便便下次切换回这个任务时，可以再次加载这个任务的状态

14. ThreadLocal的设计理理念与作⽤用？
1、Java中的ThreadLocal类允许我们创建只能被同⼀一个线程读写的变量量。因此，如果⼀一段代码含有⼀一个ThreadLocal变量量

的引⽤用，即使两个线程同时执⾏行行这段代码，它们也⽆无法访问到对⽅方的ThreadLocal变量量。
 1、概念：线程局部变量量。在并发编程的时候，成员变量量如果不不做任何处理理其实是线程不不安全的，各个线程都在操作同⼀一个变量量，显

然是不不⾏行行的，并且我们也知道volatile这个关键字也是不不能保证线程安全的。那么在有⼀一种情况之下，我们需要满⾜足这样⼀一个条件：变

量量是同⼀一个，但是每个线程都使⽤用同⼀一个初始值，也就是使⽤用同⼀一个变量量的⼀一个新的副本。这种情况之下ThreadLocal就⾮非常适⽤用，⽐比

如说DAO的数据库连接，我们知道DAO是单例例的，那么他的属性Connection就不不是⼀一个线程安全的变量量。⽽而我们每个线程都需要使⽤用

他，并且各⾃自使⽤用各⾃自的。这种情况，ThreadLocal就⽐比较好的解决了了这个问题。

 2、原理理：从本质来讲，就是每个线程都维护了了⼀一个map，⽽而这个map的key就是threadLocal，⽽而值就是我们set的那个值，每次

线程在get的时候，都从⾃自⼰己的变量量中取值，既然从⾃自⼰己的变量量中取值，那肯定就不不存在线程安全问题，总体来讲，ThreadLocal这个

变量量的状态根本没有发⽣生变化，他仅仅是充当⼀一个key的⻆角⾊色，另外提供给每⼀一个线程⼀一个初始值。

 3、实现机制：每个Thread对象内部都维护了了⼀一个ThreadLocalMap这样⼀一个ThreadLocal的Map，可以存放若⼲干个

ThreadLocal。

1 /* ThreadLocal values pertaining to this thread. This map is maintained
2 * by the ThreadLocal class. */
3 ThreadLocal.ThreadLocalMap threadLocals = null;

 4、应⽤用场景：当很多线程需要多次使⽤用同⼀一个对象，并且需要该对象具有相同初始化值的时候最适合使⽤用ThreadLocal。

15. ThreadPool（线程池）⽤用法与优势？
1、ThreadPool 优点

1、减少了了创建和销毁线程的次数，每个⼯工作线程都可以被重复利利⽤用，可执⾏行行多个任务
2、可以根据系统的承受能⼒力力，调整线程池中⼯工作线线程的数⽬目，防⽌止因为因为消耗过多的内存，⽽而把服务器器累趴下
(每个线程需要⼤大约1MB内存，线程开的越多，消耗的内存也就越⼤大，最后死机)

减少在创建和销毁线程上所花的时间以及系统资源的开销

如不不使⽤用线程池，有可能造成系统创建⼤大量量线程⽽而导致消耗完系统内存

2、⽐比较重要的⼏几个类：

Java⾥⾯线程池的顶级接⼜是Executor，但是严格意义上讲Executor并不是⼀个线程池，⽽只是⼀个执⾏线程的⼯具。真正的
线程池接⼜是ExecutorService。

3、任务执⾏行行顺序：

类 描述

ExecutorService 真正的线程池接⼝口。

ScheduledExecutorService 能和Timer/TimerTask类似，解决那些需要任务重复执⾏行行的问题。

ThreadPoolExecutor ExecutorService的默认实现。

ScheduledThreadPoolExecutor 继承ThreadPoolExecutor的ScheduledExecutorService接⼝口实
现，周期性任务调度的类实现。

i. 当线程数⼩小于corePoolSize时，创建线程执⾏行行任务。
ii. 当线程数⼤大于等于corePoolSize并且workQueue没有满时，放⼊入workQueue中
iii. 线程数⼤大于等于corePoolSize并且当workQueue满时，新任务新建线程运⾏行行，线程总数要⼩小于maximumPoolSize
iv. 当线程总数等于maximumPoolSize并且workQueue满了了的时候执⾏行行handler的rejectedExecution。也就是拒绝策
略略。

16. Concurrent包⾥里里的其他东⻄西：ArrayBlockingQueue、CountDownLatch等等。
1、ArrayBlockingQueue 数组结构组成的有界阻塞队列列：
2、CountDownLatch 允许⼀一个或多个线程等待其他线程完成操作；

join⽤于让当前执⾏线程等待join线程执⾏结束。其实现原理是不停检查join线程是否存活，如果join线程存活则让当前线程永
远wait

17. synchronized和ReentrantLock的区别？
1、基础知识

可重⼊入锁。可重⼊入锁是指同⼀一个线程可以多次获取同⼀一把锁。ReentrantLock和synchronized都是可重⼊入锁。
可中断锁。可中断锁是指线程尝试获取锁的过程中，是否可以响应中断。synchronized是不不可中断锁，⽽而

ReentrantLock则提供了了中断功能。
公平锁与⾮非公平锁。公平锁是指多个线程同时尝试获取同⼀一把锁时，获取锁的顺序按照线程达到的顺序，⽽而⾮非公

平锁则允许线程“插队”。synchronized是⾮非公平锁，⽽而ReentrantLock的默认实现是⾮非公平锁，但是也可以设置为公
平锁。

CAS操作(CompareAndSwap)。CAS操作简单的说就是⽐比较并交换。CAS 操作包含三个操作数 —— 内存位置
（V）、预期原值（A）和新值(B)。如果内存位置的值与预期原值相匹配，那么处理理器器会⾃自动将该位置值更更新为新
值。否则，处理理器器不不做任何操作。⽆无论哪种情况，它都会在 CAS 指令之前返回该位置的值。CAS 有效地说明了了“我
认为位置 V 应该包含值 A；如果包含该值，则将 B 放到这个位置；否则，不不要更更改该位置，只告诉我这个位置现在
的值即可。”

2、Synchronized
i. synchronized是java内置的关键字，它提供了了⼀一种独占的加锁⽅方式。synchronized的获取和释放锁由JVM实现，⽤用
户不不需要显示的释放锁，⾮非常⽅方便便。然⽽而synchronized也有⼀一定的局限性：

1. 当线程尝试获取锁的时候，如果获取不不到锁会⼀一直阻塞。

2. 如果获取锁的线程进⼊入休眠或者阻塞，除⾮非当前线程异常，否则其他线程尝试获取锁必须⼀一直等待。

3、ReentrantLock
i. ReentrantLock它是JDK 1.5之后提供的API层⾯面的互斥锁，需要lock()和unlock()⽅方法配合try/finally语句句块来完成。
ii. 等待可中断避免，出现死锁的情况（如果别的线程正持有锁，会等待参数给定的时间，在等待的过程中，如果获

取了了锁定，就返回true，如果等待超时，返回false）
iii. 公平锁与⾮非公平锁多个线程等待同⼀一个锁时，必须按照申请锁的时间顺序获得锁，Synchronized锁⾮非公平锁，
ReentrantLock默认的构造函数是创建的⾮非公平锁，可以通过参数true设为公平锁，但公平锁表现的性能不不是很好。

18. Semaphore有什什么作⽤用？
Semaphore就是⼀一个信号量量，它的作⽤用是限制某段代码块的并发数

19. Java Concurrency API中的Lock接⼝口(Lock interface)是什什么？对⽐比同步它有什什么优势？
1、Lock接⼝口⽐比同步⽅方法和同步块提供了了更更具扩展性的锁操作。他们允许更更灵活的结构，可以具有完全不不同的性质，并且
可以⽀支持多个相关类的条件对象。

2、它的优势有：
可以使锁更更公平

可以使线程在等待锁的时候响应中断

可以让线程尝试获取锁，并在⽆无法获取锁的时候⽴立即返回或者等待⼀一段时间

可以在不不同的范围，以不不同的顺序获取和释放锁

20. Hashtable的size()⽅方法中明明只有⼀一条语句句”return count”，为什什么还要做同步？
1、同⼀一时间只能有⼀一条线程执⾏行行固定类的同步⽅方法，但是对于类的⾮非同步⽅方法，可以多条线程同时访问。所以，这样就
有问题了了，可能线程A在执⾏行行Hashtable的put⽅方法添加数据，线程B则可以正常调⽤用size()⽅方法读取Hashtable中当前元素
的个数，那读取到的值可能不不是最新的，可能线程A添加了了完了了数据，但是没有对size++，线程B就已经读取size了了，那
么对于线程B来说读取到的size⼀一定是不不准确的。
2、⽽而给size()⽅方法加了了同步之后，意味着线程B调⽤用size()⽅方法只有在线程A调⽤用put⽅方法完毕之后才可以调⽤用，这样就保
证了了线程安全性。

21. ConcurrentHashMap的并发度是什什么？
1、⼯工作机制（分⽚片思想）：它引⼊入了了⼀一个“分段锁”的概念，具体可以理理解为把⼀一个⼤大的Map拆分成N个⼩小的segment，

根据key.hashCode()来决定把key放到哪个HashTable中。可以提供相同的线程安全，但是效率提升N倍，默认提升16倍。
2、应⽤用：当读>写时使⽤用，适合做缓存，在程序启动时初始化，之后可以被多个线程访问；
3、hash冲突：
 1、简介：HashMap中调⽤用hashCode()⽅方法来计算hashCode。由于在Java中两个不不同的对象可能有⼀一样的

hashCode,所以不不同的键可能有⼀一样hashCode，从⽽而导致冲突的产⽣生。
 2、hash冲突解决：使⽤用平衡树来代替链表，当同⼀一hash中的元素数量量超过特定的值便便会由链表切换到平衡树
4、⽆无锁读：ConcurrentHashMap之所以有较好的并发性是因为ConcurrentHashMap是⽆无锁读和加锁写，并且利利⽤用了了分

段锁（不不是在所有的entry上加锁，⽽而是在⼀一部分entry上加锁）；

 读之前会先判断count(jdk1.6)，其中的count是被volatile修饰的(当变量量被volatile修饰后，每次更更改该变量量的时候会将更更
改结果写到系统主内存中，利利⽤用多处理理器器的缓存⼀一致性，其他处理理器器会发现⾃自⼰己的缓存⾏行行对应的内存地址被修改，就会将⾃自⼰己处

理理器器的缓存⾏行行设置为失效，并强制从系统主内存获取最新的数据。)，故可以实现⽆无锁读。

5、ConcurrentHashMap的并发度就是segment的⼤大⼩小，默认为16，这意味着最多同时可以有16条线程操作
ConcurrentHashMap，这也是ConcurrentHashMap对Hashtable的最⼤大优势。

22. ReentrantReadWriteLock读写锁的使⽤用？
1、读写锁：分为读锁和写锁，多个读锁不不互斥，读锁与写锁互斥，这是由jvm⾃自⼰己控制的，你只要上好相应的锁即可。
2、如果你的代码只读数据，可以很多⼈人同时读，但不不能同时写，那就上读锁；
3、如果你的代码修改数据，只能有⼀一个⼈人在写，且不不能同时读取，那就上写锁。总之，读的时候上读锁，写的时候上写

锁！

23. CyclicBarrier和CountDownLatch的⽤用法及区别？
CyclicBarrier和CountDownLatch 都位于java.util.concurrent 这个包下

24. LockSupport⼯工具？
LockSupport是JDK中⽐比较底层的类，⽤用来创建锁和其他同步⼯工具类的基本线程阻塞。java锁和同步器器框架的核⼼心 AQS:

AbstractQueuedSynchronizer，就是通过调⽤用 LockSupport .park()和 LockSupport .unpark()实现线程的阻塞和唤醒 的。

25. Condition接⼝口及其实现原理理？
1. 在java.util.concurrent包中，有两个很特殊的⼯工具类，Condition和ReentrantLock，使⽤用过的⼈人都知道，
ReentrantLock（重⼊入锁）是jdk的concurrent包提供的⼀一种独占锁的实现
2. 我们知道在线程的同步时可以使⼀一个线程阻塞⽽而等待⼀一个信号，同时放弃锁使其他线程可以能竞争到锁

3. 在synchronized中我们可以使⽤用Object的wait()和notify⽅方法实现这种等待和唤醒
4. 但是在Lock中怎么实现这种wait和notify呢？答案是Condition，学习Condition主要是为了了⽅方便便以后学习blockqueue和
concurrenthashmap的源码，同时也进⼀一步理理解ReentrantLock。

26. Fork/Join框架的理理解?
1、Fork就是把⼀一个⼤大任务切分为若⼲干⼦子任务并⾏行行的执⾏行行。
2、Join就是合并这些⼦子任务的执⾏行行结果，最后得到这个⼤大任务的结果。

27. wait()和sleep()的区别?
1、sleep()

⽅方法是线程类（Thread）的静态⽅方法，让调⽤用线程进⼊入睡眠状态，让出执⾏行行机会给其他线程，等到休眠时间结束
后，线程进⼊入就绪状态和其他线程⼀一起竞争cpu的执⾏行行时间。

因为sleep() 是static静态的⽅方法，他不不能改变对象的机锁，当⼀一个synchronized块中调⽤用了了sleep() ⽅方法，线程虽然
进⼊入休眠，但是对象的机锁没有被释放，其他线程依然⽆无法访问这个对象。

2、wait()
wait()是Object类的⽅方法，当⼀一个线程执⾏行行到wait⽅方法时，它就进⼊入到⼀一个和该对象相关的等待池，同时释放对象的

机锁，使得其他线程能够访问，可以通过notify，notifyAll⽅方法来唤醒等待的线程

28. 线程的五个状态（五种状态，创建、就绪、运⾏行行、阻塞和死亡）?

CountDownLatch CyclicBarrier

减计数⽅方式 加计数⽅方式

计算为0时释放所有等待的线程 计数达到指定值时释放所有等待线程

计数为0时，⽆无法重置 计数达到指定值时，计数置为0重新开始

调⽤用countDown()⽅方法计数减⼀一，调⽤用await()⽅方法只进⾏行行阻塞，
对计数没任何影响

调⽤用await()⽅方法计数加1，若加1后的值不不等于
构造⽅方法的值，则线程阻塞

不不可重复利利⽤用 可重复利利⽤用

线程通常都有五种状态，创建、就绪、运⾏行行、阻塞和死亡。

i. 第⼀一是创建状态。在⽣生成线程对象，并没有调⽤用该对象的start⽅方法，这是线程处于创建状态。
ii. 第⼆二是就绪状态。当调⽤用了了线程对象的start⽅方法之后，该线程就进⼊入了了就绪状态，但是此时线程调度程序还没有
把该线程设置为当前线程，此时处于就绪状态。在线程运⾏行行之后，从等待或者睡眠中回来之后，也会处于就绪状

态。

iii. 第三是运⾏行行状态。线程调度程序将处于就绪状态的线程设置为当前线程，此时线程就进⼊入了了运⾏行行状态，开始运⾏行行

run函数当中的代码。
iv. 第四是阻塞状态。线程正在运⾏行行的时候，被暂停，通常是为了了等待某个时间的发⽣生(⽐比如说某项资源就绪)之后再

继续运⾏行行。sleep,suspend，wait等⽅方法都可以导致线程阻塞。
v. 第五是死亡状态。如果⼀一个线程的run⽅方法执⾏行行结束或者调⽤用stop⽅方法后，该线程就会死亡。对于已经死亡的线
程，⽆无法再使⽤用start⽅方法令其进⼊入就绪。

29. start()⽅方法和run()⽅方法的区别？
1、start()⽅方法来启动⼀一个线程，真正实现了了多线程运⾏行行。
2、如果直接调⽤用run(),其实就相当于是调⽤用了了⼀一个普通函数⽽而已，直接调⽤用run()⽅方法必须等待run()⽅方法执⾏行行完毕才能执

⾏行行下⾯面的代码，所以执⾏行行路路径还是只有⼀一条，根本就没有线程的特征，所以在多线程执⾏行行时要使⽤用start()⽅方法⽽而不不是run()⽅方法。

30. Runnable接⼝口和Callable接⼝口的区别？
1. Runnable接⼝口中的run()⽅方法的返回值是void，它做的事情只是纯粹地去执⾏行行run()⽅方法中的代码⽽而已；
2. Callable接⼝口中的call()⽅方法是有返回值的，是⼀一个泛型，和Future、FutureTask配合可以⽤用来获取异步执⾏行行的结果。

31. volatile关键字的作⽤用？
1. 多线程主要围绕可⻅见性和原⼦子性两个特性⽽而展开，使⽤用volatile关键字修饰的变量量，保证了了其在多线程之间的可⻅见性，
即每次读取到volatile变量量，⼀一定是最新的数据。
2. 代码底层执⾏行行不不像我们看到的⾼高级语⾔言—-Java程序这么简单，它的执⾏行行是Java代码–>字节码–>根据字节码执⾏行行对应
的C/C++代码–>C/C++代码被编译成汇编语⾔言–>和硬件电路路交互，现实中，为了了获取更更好的性能JVM可能会对指令进⾏行行
重排序，多线程下可能会出现⼀一些意想不不到的问题。使⽤用volatile则会对禁⽌止语义重排序，当然这也⼀一定程度上降低了了代
码执⾏行行效率。

32. Java中如何获取到线程dump⽂文件？
死循环、死锁、阻塞、⻚页⾯面打开慢等问题，查看线程dump是最好的解决问题的途径。所谓线程dump也就是线程堆栈，

获取到线程堆栈有两步：

1、获取到线程的pid，可以通过使⽤用jps命令，在Linux环境下还可以使⽤用ps -ef | grep java
2、打印线程堆栈，可以通过使⽤用jstack pid命令，在Linux环境下还可以使⽤用kill -3 pid
3、另外提⼀一点，Thread类提供了了⼀一个getStackTrace()⽅方法也可以⽤用于获取线程堆栈。这是⼀一个实例例⽅方法，因此此⽅方法

是和具体线程实例例绑定的，每次获取到的是具体某个线程当前运⾏行行的堆栈。

33. 线程和进程有什什么区别？
1. 进程是系统进⾏行行资源分配的基本单位，有独⽴立的内存地址空间

2. 线程是CPU独⽴立运⾏行行和独⽴立调度的基本单位，没有单独地址空间，有独⽴立的栈，局部变量量，寄存器器， 程序计数器器等。
3. 创建进程的开销⼤大，包括创建虚拟地址空间等需要⼤大量量系统资源

4. 创建线程开销⼩小，基本上只有⼀一个内核对象和⼀一个堆栈。

5. ⼀一个进程⽆无法直接访问另⼀一个进程的资源；同⼀一进程内的多个线程共享进程的资源。

6. 进程切换开销⼤大，线程切换开销⼩小；进程间通信开销⼤大，线程间通信开销⼩小。

7. 线程属于进程，不不能独⽴立执⾏行行。每个进程⾄至少要有⼀一个线程，成为主线程

34. 线程实现的⽅方式有⼏几种（四种）？

1. 继承Thread类，重写run⽅方法

2. 实现Runnable接⼝口，重写run⽅方法，实现Runnable接⼝口的实现类的实例例对象作为Thread构造函数的target

3. 实现Callable接⼝口通过FutureTask包装器器来创建Thread线程

4. 通过线程池创建线程

1 public class ThreadDemo03 {
2 public static void main(String[] args) {
3 Callable<Object> oneCallable = new Tickets<Object>();
4 FutureTask<Object> oneTask = new FutureTask<Object>(oneCallable);
5 Thread t = new Thread(oneTask);
6 System.out.println(Thread.currentThread().getName());
7 t.start();
8 }
9 }
10 ​

11 class Tickets<Object> implements Callable<Object>{
12 //重写call⽅方法
13 @Override
14 public Object call() throws Exception {
15 // TODO Auto-generated method stub
16 System.out.println(Thread.currentThread().getName()+"-->我是通过实现Callable接⼝口通过FutureTask包装器器来实现的线程"
17 return null;
18 }
19 }

35. ⾼高并发、任务执⾏行行时间短的业务怎样使⽤用线程池？并发不不⾼高、任务执⾏行行时间⻓长的业务怎样使⽤用线程池？并发⾼高、

业务执⾏行行时间⻓长的业务怎样使⽤用线程池？

1. ⾼高并发、任务执⾏行行时间短的业务：线程池线程数可以设置为CPU核数+1，减少线程上下⽂文的切换。
2. 并发不不⾼高、任务执⾏行行时间⻓长的业务要区分开看：

a. 假如是业务时间⻓长集中在IO操作上，也就是IO密集型的任务，因为IO操作并不不占⽤用CPU，所以不不要让所有的CPU
闲下来，可以加⼤大线程池中的线程数⽬目，让CPU处理理更更多的业务
b. 假如是业务时间⻓长集中在计算操作上，也就是计算密集型任务，这个就没办法了了，和（1）⼀一样吧，线程池中的线
程数设置得少⼀一些，减少线程上下⽂文的切换

3. 并发⾼高、业务执⾏行行时间⻓长，解决这种类型任务的关键不不在于线程池⽽而在于整体架构的设计，看看这些业务⾥里里⾯面某些数

据是否能做缓存是第⼀一步，增加服务器器是第⼆二步，⾄至于线程池的设置，设置参考（2）。最后，业务执⾏行行时间⻓长的问题，
也可能需要分析⼀一下，看看能不不能使⽤用中间件对任务进⾏行行拆分和解耦。

36. 如果你提交任务时，线程池队列列已满，这时会发⽣生什什么？
1、如果你使⽤用的LinkedBlockingQueue，也就是⽆无界队列列的话，没关系，继续添加任务到阻塞队列列中等待执⾏行行，因为

LinkedBlockingQueue可以近乎认为是⼀一个⽆无穷⼤大的队列列，可以⽆无限存放任务；
2、如果你使⽤用的是有界队列列⽐比⽅方说ArrayBlockingQueue的话，任务⾸首先会被添加到ArrayBlockingQueue中，

ArrayBlockingQueue满了了，则会使⽤用拒绝策略略RejectedExecutionHandler处理理满了了的任务，默认是AbortPolicy。

37. 锁的等级：⽅方法锁、对象锁、类锁?
1. ⽅方法锁（synchronized修饰⽅方法时）

a. 通过在⽅方法声明中加⼊入 synchronized关键字来声明 synchronized ⽅方法。
b. synchronized ⽅方法控制对类成员变量量的访问：
c. 每个类实例例对应⼀一把锁，每个 synchronized ⽅方法都必须获得调⽤用该⽅方法的类实例例的锁⽅方能执⾏行行，否则所属线程阻
塞，⽅方法⼀一旦执⾏行行，就独占该锁，直到从该⽅方法返回时才将锁释放，此后被阻塞的线程⽅方能获得该锁，重新进⼊入可

执⾏行行状态。这种机制确保了了同⼀一时刻对于每⼀一个类实例例，其所有声明为 synchronized 的成员函数中⾄至多只有⼀一个处

于可执⾏行行状态，从⽽而有效避免了了类成员变量量的访问冲突。

2. 对象锁（synchronized修饰⽅方法或代码块）
a. 当⼀一个对象中有synchronized method或synchronized block的时候调⽤用此对象的同步⽅方法或进⼊入其同步区域时，
就必须先获得对象锁。如果此对象的对象锁已被其他调⽤用者占⽤用，则需要等待此锁被释放。（⽅方法锁也是对象锁）
　　 　　　
b. java的所有对象都含有1个互斥锁，这个锁由JVM⾃自动获取和释放。线程进⼊入synchronized⽅方法的时候获取该对象
的锁，当然如果已经有线程获取了了这个对象的锁，那么当前线程会等待；synchronized⽅方法正常返回或者抛异常⽽而
终⽌止，JVM会⾃自动释放对象锁。这⾥里里也体现了了⽤用synchronized来加锁的1个好处，⽅方法抛异常的时候，锁仍然可以由
JVM来⾃自动释放。　

3. 类锁(synchronized 修饰静态的⽅方法或代码块)
a. 由于⼀一个class不不论被实例例化多少次，其中的静态⽅方法和静态变量量在内存中都只有⼀一份。所以，⼀一旦⼀一个静态的⽅方
法被申明为synchronized。此类所有的实例例化对象在调⽤用此⽅方法，共⽤用同⼀一把锁，我们称之为类锁。

4. 对象锁是⽤用来控制实例例⽅方法之间的同步，类锁是⽤用来控制静态⽅方法（或静态变量量互斥体）之间的同步

38. 如果同步块内的线程抛出异常会发⽣生什什么？
synchronized⽅方法正常返回或者抛异常⽽而终⽌止，JVM会⾃自动释放对象锁

39. 并发编程（concurrency）并⾏行行编程（parallellism）有什什么区别？

1. 解释⼀一：并⾏行行是指两个或者多个事件在同⼀一时刻发⽣生；⽽而并发是指两个或多个事件在同⼀一时间间隔发⽣生。

2. 解释⼆二：并⾏行行是在不不同实体上的多个事件，并发是在同⼀一实体上的多个事件。

3. 解释三：在⼀一台处理理器器上“同时”处理理多个任务，在多台处理理器器上同时处理理多个任务。如hadoop分布式集群
所以并发编程的⽬标是充分的利⽤处理器的每⼀个核，以达到最⾼的处理性能。

40. 如何保证多线程下 i++ 结果正确？
1. volatile只能保证你数据的可⻅见性，获取到的是最新的数据，不不能保证原⼦子性；
2. ⽤用AtomicInteger保证原⼦子性。
3. synchronized既能保证共享变量量可⻅见性，也可以保证锁内操作的原⼦子性。

41. ⼀一个线程如果出现了了运⾏行行时异常会怎么样?
1. 如果这个异常没有被捕获的话，这个线程就停⽌止执⾏行行了了。
2. 另外重要的⼀一点是：如果这个线程持有某个对象的监视器器，那么这个对象监视器器会被⽴立即释放.

42. 如何在两个线程之间共享数据?
通过在线程之间共享对象就可以了了，然后通过wait/notify/notifyAll、await/signal/signalAll进⾏行行唤起和等待，⽐比⽅方说阻塞

队列列BlockingQueue就是为线程之间共享数据⽽而设计的。
1. 卖票系统：

1 package 多线程共享数据;
2 public class Ticket implements Runnable{
3 private int ticket = 10;
4 public void run() {
5 while(ticket>0){
6 ticket--;
7 System.out.println("当前票数为："+ticket);
8 }
9 }
10 }
11 ​

12 package 多线程共享数据;
13 public class SellTicket {
14 public static void main(String[] args) {
15 Ticket t = new Ticket();
16 new Thread(t).start();
17 new Thread(t).start();
18 }
19 }

2. 银⾏行行存取款：

1 public class MyData {
2 private int j=0;
3 public synchronized void add(){
4 j++;
5 System.out.println("线程"+Thread.currentThread().getName()+"j为："+j);
6 }
7 public synchronized void dec(){
8 j--;
9 System.out.println("线程"+Thread.currentThread().getName()+"j为："+j);
10 }
11 public int getData(){
12 return j;
13 }
14 }
15 ​

16 public class AddRunnable implements Runnable{
17 MyData data;
18 public AddRunnable(MyData data){
19 this.data= data;
20 }
21 public void run() {
22 data.add();
23 }
24 }
25 ​

26 public class DecRunnable implements Runnable {
27 MyData data;
28 public DecRunnable(MyData data){
29 this.data = data;
30 }
31 public void run() {
32 data.dec();
33 }
34 }
35 ​

36 public class TestOne {
37 public static void main(String[] args) {
38 MyData data = new MyData();
39 Runnable add = new AddRunnable(data);
40 Runnable dec = new DecRunnable(data);
41 for(int i=0;i<2;i++){
42 new Thread(add).start();
43 new Thread(dec).start();
44 }
45 }

43. ⽣生产者消费者模型的作⽤用是什什么?
1. 通过平衡⽣生产者的⽣生产能⼒力力和消费者的消费能⼒力力来提升整个系统的运⾏行行效率，这是⽣生产者消费者模型最重要的作⽤用。

2. 解耦，这是⽣生产者消费者模型附带的作⽤用，解耦意味着⽣生产者和消费者之间的联系少，联系越少越可以独⾃自发展⽽而不不

需要受到相互的制约。

44. 怎么唤醒⼀一个阻塞的线程?
1. 如果线程是因为调⽤用了了wait()、sleep()或者join()⽅方法⽽而导致的阻塞；

1、suspend与resume
Java废弃 suspend() 去挂起线程的原因，是因为 suspend() 在导致线程暂停的同时，并不不会去释放任何锁资

源。其他线程都⽆无法访问被它占⽤用的锁。直到对应的线程执⾏行行 resume() ⽅方法后，被挂起的线程才能继续，从⽽而其它
被阻塞在这个锁的线程才可以继续执⾏行行。

但是，如果 resume() 操作出现在 suspend() 之前执⾏行行，那么线程将⼀一直处于挂起状态，同时⼀一直占⽤用锁，这就
产⽣生了了死锁。⽽而且，对于被挂起的线程，它的线程状态居然还是 Runnable。
2、wait与notify

wait与notify必须配合synchronized使⽤用，因为调⽤用之前必须持有锁，wait会⽴立即释放锁，notify则是同步块执⾏行行
完了了才释放

3、await与singal
Condition类提供，⽽而Condition对象由new ReentLock().newCondition()获得，与wait和notify相同，因为使⽤用

Lock锁后⽆无法使⽤用wait⽅方法
4、park与unpark

LockSupport是⼀一个⾮非常⽅方便便实⽤用的线程阻塞⼯工具，它可以在线程任意位置让线程阻塞。和Thread.suspenf()相
⽐比，它弥补了了由于resume()在前发⽣生，导致线程⽆无法继续执⾏行行的情况。和Object.wait()相⽐比，它不不需要先获得某个对
象的锁，也不不会抛出IException异常。可以唤醒指定线程。

2. 如果线程遇到了了IO阻塞，⽆无能为⼒力力，因为IO是操作系统实现的，Java代码并没有办法直接接触到操作系统。

45. Java中⽤用到的线程调度算法是什什么
1. 抢占式。⼀一个线程⽤用完CPU之后，操作系统会根据线程优先级、线程饥饿情况等数据算出⼀一个总的优先级并分配下⼀一

个时间⽚片给某个线程执⾏行行。

46. 单例例模式的线程安全性?
⽼老老⽣生常谈的问题了了，⾸首先要说的是单例例模式的线程安全意味着：某个类的实例例在多线程环境下只会被创建⼀一次出来。单

例例模式有很多种的写法，我总结⼀一下：

（1）饿汉式单例例模式的写法：线程安全
（2）懒汉式单例例模式的写法：⾮非线程安全
（3）双检锁单例例模式的写法：线程安全

47. 线程类的构造⽅方法、静态块是被哪个线程调⽤用的?
线程类的构造⽅方法、静态块是被new这个线程类所在的线程所调⽤用的，⽽而run⽅方法⾥里里⾯面的代码才是被线程⾃自身所调⽤用的。

48. 同步⽅方法和同步块，哪个是更更好的选择?
1. 同步块是更更好的选择，因为它不不会锁住整个对象（当然也可以让它锁住整个对象）。同步⽅方法会锁住整个对象，哪怕

这个类中有多个不不相关联的同步块，这通常会导致他们停⽌止执⾏行行并需要等待获得这个对象上的锁。

synchronized(this)以及⾮非static的synchronized⽅方法（⾄至于static synchronized⽅方法请往下看），只能防⽌止多个线程同时
执⾏行行同⼀一个对象的同步代码段。

如果要锁住多个对象⽅方法，可以锁住⼀一个固定的对象，或者锁住这个类的Class对象。
synchronized锁住的是括号⾥里里的对象，⽽而不不是代码。对于⾮非static的synchronized⽅方法，锁的就是对象本身也就是this。
2. 例例如：

1 public class SynObj{
2 ​

3 public synchronized void showA(){
4 System.out.println("showA..");
5 try {
6 Thread.sleep(3000);
7 } catch (InterruptedException e) {
8 e.printStackTrace();
9 }
10 }
11 ​

12 public void showB(){
13 synchronized (this) {
14 System.out.println("showB..");
15 }
16 }

17 }

49. 如何检测死锁？怎么预防死锁？
1. 概念：

是指两个或两个以上的进程在执⾏行行过程中，因争夺资源⽽而造成的⼀一种互相等待的现象，若⽆无外⼒力力作⽤用，它们都将⽆无

法推进下去。此时称系统处于死锁；

2. 死锁的四个必要条件：
i. 互斥条件：进程对所分配到的资源不不允许其他进程进⾏行行访问，若其他进程访问该资源，只能等待，直⾄至占有该资源

的进程使⽤用完成后释放该资源

ii. 请求和保持条件：进程获得⼀一定的资源之后，⼜又对其他资源发出请求，但是该资源可能被其他进程占有，此时请

求阻塞，但⼜又对⾃自⼰己获得的资源保持不不放

iii. 不不可剥夺条件：是指进程已获得的资源，在未完成使⽤用之前，不不可被剥夺，只能在使⽤用完后⾃自⼰己释放

iv. 环路路等待条件：是指进程发⽣生死锁后，若⼲干进程之间形成⼀一种头尾相接的循环等待资源关系

2. 死锁产⽣生的原因：
1.因竞争资源发⽣生死锁 现象：系统中供多个进程共享的资源的数⽬目不不⾜足以满⾜足全部进程的需要时，就会引起对诸资
源的竞争⽽而发⽣生死锁现象

2.进程推进顺序不不当发⽣生死锁
3. 检查死锁

i. 有两个容器器，⼀一个⽤用于保存线程正在请求的锁，⼀一个⽤用于保存线程已经持有的锁。每次加锁之前都会做如下检测:
ii. 检测当前正在请求的锁是否已经被其它线程持有,如果有，则把那些线程找出来

iii. 遍历第⼀一步中返回的线程，检查⾃自⼰己持有的锁是否正被其中任何⼀一个线程请求，如果第⼆二步返回真,表示出现了了死

锁

4. 死锁的解除与预防：控制不不要让四个必要条件成⽴立。

50. HashMap在多线程环境下使⽤用需要注意什什么？
要注意死循环的问题，HashMap的put操作引发扩容，这个动作在多线程并发下会发⽣生线程死循环的问题。

 1、HashMap不不是线程安全的；Hashtable线程安全，但效率低，因为是Hashtable是使⽤用synchronized的，所有线程竞争同⼀一

把锁；⽽而ConcurrentHashMap不不仅线程安全⽽而且效率⾼高，因为它包含⼀一个segment数组，将数据分段存储，给每⼀一段数据配⼀一把锁，

也就是所谓的锁分段技术。

 2、HashMap为何线程不不安全：

 1、put时key相同导致其中⼀一个线程的value被覆盖；

 2、多个线程同时扩容，造成数据丢失；

 3、多线程扩容时导致Node链表形成环形结构造成.next()死循环，导致CPU利利⽤用率接近100%；

 3、ConcurrentHashMap最⾼高效；

51. 什什么是守护线程？有什什么⽤用？
守护线程（即daemon thread），是个服务线程，准确地来说就是服务其他的线程，这是它的作⽤用——⽽而其他的线程只有

⼀一种，那就是⽤用户线程。所以java⾥里里线程分2种，
1、守护线程，⽐比如垃圾回收线程，就是最典型的守护线程。
2、⽤用户线程，就是应⽤用程序⾥里里的⾃自定义线程。

52. 如何实现线程串串⾏行行执⾏行行？
a. 为了了控制线程执⾏行行的顺序，如ThreadA->ThreadB->ThreadC->ThreadA循环执⾏行行三个线程，我们需要确定唤醒、等待
的顺序。这时我们可以同时使⽤用 Obj.wait()、Obj.notify()与synchronized(Obj)来实现这个⽬目标。

线程中持有上⼀一个线程类的对象锁以及⾃自⼰己的锁，由于这种依赖关系，该线程执⾏行行需要等待上个对象释放锁，从⽽而

保证类线程执⾏行行的顺序。

b. 通常情况下，wait是线程在获取对象锁后，主动释放对象锁，同时本线程休眠，直到有其它线程调⽤用对象的notify()唤
醒该线程，才能继续获取对象锁，并继续执⾏行行。⽽而notify()则是对等待对象锁的线程的唤醒操作。但值得注意的是notify()
调⽤用后，并不不是⻢马上就释放对象锁，⽽而是在相应的synchronized(){}语句句块执⾏行行结束。释放对象锁后，JVM会在执⾏行行
wait()等待对象锁的线程中随机选取⼀一线程，赋予其对象锁，唤醒线程，继续执⾏行行。

1 public class ThreadSerialize {
2
3 public static void main(String[] args){
4 ThreadA threadA = new ThreadA();
5 ThreadB threadB = new ThreadB();
6 ThreadC threadC = new ThreadC();
7

8 threadA.setThreadC(threadC);
9 threadB.setThreadA(threadA);
10 threadC.setThreadB(threadB);
11
12 threadA.start();
13 threadB.start();
14 threadC.start();
15
16 while (true){
17 try {
18 Thread.currentThread().sleep(1000);
19 } catch (InterruptedException e) {
20 e.printStackTrace();
21 }
22 }
23 }
24 }
25
26 class ThreadA extends Thread{
27 private ThreadC threadC;
28 @Override
29 public void run() {
30 while (true){
31 synchronized (threadC){
32 synchronized (this){
33 System.out.println("I am ThreadA。。。");
34 this.notify();
35 }
36 try {
37 threadC.wait();
38 } catch (InterruptedException e) {
39 e.printStackTrace();
40 }
41 }
42 }
43
44 }
45
46 public void setThreadC(ThreadC threadC) {
47 this.threadC = threadC;
48 }
49 }
50 class ThreadB extends Thread{
51 private ThreadA threadA;
52 @Override
53 public void run() {
54 while (true){
55 synchronized (threadA){
56 synchronized (this){
57 System.out.println("I am ThreadB。。。");
58 this.notify();
59 }

60 try {
61 threadA.wait();
62 } catch (InterruptedException e) {
63 e.printStackTrace();
64 }
65 }
66 }
67
68 }
69
70 public void setThreadA(ThreadA threadA) {
71 this.threadA = threadA;
72 }
73 }
74 class ThreadC extends Thread{
75 private ThreadB threadB;
76 @Override
77 public void run() {
78 while (true){
79 synchronized (threadB){
80 synchronized (this){
81 System.out.println("I am ThreadC。。。");
82 this.notify();
83 }
84 try {
85 threadB.wait();
86 } catch (InterruptedException e) {
87 e.printStackTrace();
88 }
89 }
90 }
91
92 }
93
94 public void setThreadB(ThreadB threadB) {
95 this.threadB = threadB;
96 }
97 }
98 ​

99 ​

53. 可以运⾏行行时kill掉⼀一个线程吗？
a. 不不可以，线程有5种状态，新建（new）、可运⾏行行（runnable）、运⾏行行中（running）、阻塞（block）、死亡
（dead）。
b. 只有当线程run⽅方法或者主线程main⽅方法结束，⼜又或者抛出异常时，线程才会结束⽣生命周期。

54. 关于synchronized：
 1. 在某个对象的所有synchronized⽅方法中,在某个时刻只能有⼀一个唯⼀一的⼀一个线程去访问这些synchronized⽅方法

 2. 如果⼀一个⽅方法是synchronized⽅方法,那么该synchronized关键字表示给当前对象上锁(即this)相当于

synchronized(this){}

 3. 如果⼀一个synchronized⽅方法是static的,那么该synchronized表示给当前对象所对应的class对象上锁(每个类不不管⽣生成

多少对象,其对应的class对象只有⼀一个)

55. 分步式锁,程序数据库中死锁机制及解决⽅方案
基本原理理：⽤用⼀一个状态值表示锁，对锁的占⽤用和释放通过状态值来标识。

 1、三种分布式锁：

 1、Zookeeper：基于zookeeper瞬时有序节点实现的分布式锁，其主要逻辑如下。⼤大致思想即为：每个客户端对某个

功能加锁时，在zookeeper上的与该功能对应的指定节点的⽬目录下，⽣生成⼀一个唯⼀一的瞬时有序节点。判断是否获取锁的⽅方式很简

单，只需要判断有序节点中序号最⼩小的⼀一个。当释放锁的时候，只需将这个瞬时节点删除即可。同时，其可以避免服务宕机导致的锁

⽆无法释放，⽽而产⽣生的死锁问题。

 2、优点

 锁安全性⾼高，zk可持久化，且能实时监听获取锁的客户端状态。⼀一旦客户端宕机，则瞬时节点随之消失，zk因

⽽而能第⼀一时间释放锁。这也省去了了⽤用分布式缓存实现锁的过程中需要加⼊入超时时间判断的这⼀一逻辑。

 3、缺点

 性能开销⽐比较⾼高。因为其需要动态产⽣生、销毁瞬时节点来实现锁功能。所以不不太适合直接提供给⾼高并发的场景

使⽤用。

 4、实现

 可以直接采⽤用zookeeper第三⽅方库curator即可⽅方便便地实现分布式锁。

 5、适⽤用场景

 对可靠性要求⾮非常⾼高，且并发程度不不⾼高的场景下使⽤用。如核⼼心数据的定时全量量/增量量同步等。

 2、memcached：memcached带有add函数，利利⽤用add函数的特性即可实现分布式锁。add和set的区别在于：如果多

线程并发set，则每个set都会成功，但最后存储的值以最后的set的线程为准。⽽而add的话则相反，add会添加第⼀一个到达的值，并

返回true，后续的添加则都会返回false。利利⽤用该点即可很轻松地实现分布式锁。

 2、优点

 并发⾼高效

 3、缺点

 memcached采⽤用列列⼊入LRU置换策略略，所以如果内存不不够，可能导致缓存中的锁信息丢失。

 memcached⽆无法持久化，⼀一旦重启，将导致信息丢失。

 4、使⽤用场景

 ⾼高并发场景。需要 1)加上超时时间避免死锁; 2)提供⾜足够⽀支撑锁服务的内存空间; 3)稳定的集群化管理理。

 3、redis：redis分布式锁即可以结合zk分布式锁锁⾼高度安全和memcached并发场景下效率很好的优点，其实现⽅方式和

memcached类似，采⽤用setnx即可实现。需要注意的是，这⾥里里的redis也需要设置超时时间，以避免死锁。可以利利⽤用jedis客户端

实现。

1 ICacheKey cacheKey = new ConcurrentCacheKey(key, type);
2 return RedisDao.setnx(cacheKey, "1");

 2、数据库死锁机制和解决⽅方案：

 1、死锁：死锁是指两个或者两个以上的事务在执⾏行行过程中，因争夺锁资源⽽而造成的⼀一种互相等待的现象。

 2、处理理机制：解决死锁最有⽤用最简单的⽅方法是不不要有等待，将任何等待都转化为回滚，并且事务重新开始。但是有可能

影响并发性能。

 1、超时回滚，innodb_lock_wait_time设置超时时间；

 2、wait-for-graph⽅方法：跟超时回滚⽐比起来，这是⼀一种更更加主动的死锁检测⽅方式。InnoDB引擎也采⽤用这种⽅方

式。

56. spring单例例为什什么没有安全问题(ThreadLocal)
1、ThreadLocal：spring使⽤用ThreadLocal解决线程安全问题；ThreadLocal会为每⼀一个线程提供⼀一个独⽴立的变量量副本，从⽽而

隔离了了多个线程对数据的访问冲突。因为每⼀一个线程都拥有⾃自⼰己的变量量副本，从⽽而也就没有必要对该变量量进⾏行行同步了了。

ThreadLocal提供了了线程安全的共享对象，在编写多线程代码时，可以把不不安全的变量量封装进ThreadLocal。概括起来说，对于

多线程资源共享的问题，同步机制采⽤用了了“以时间换空间”的⽅方式，⽽而ThreadLocal采⽤用了了“以空间换时间”的⽅方式。前者仅提供⼀一份

变量量，让不不同的线程排队访问，⽽而后者为每⼀一个线程都提供了了⼀一份变量量，因此可以同时访问⽽而互不不影响。在很多情况下，

ThreadLocal⽐比直接使⽤用synchronized同步机制解决线程安全问题更更简单，更更⽅方便便，且结果程序拥有更更⾼高的并发性。

2、单例例：⽆无状态的Bean(⽆无状态就是⼀一次操作，不不能保存数据。⽆无状态对象(Stateless Bean)，就是没有实例例变量量的对象，不不

能保存数据，是不不变类，是线程安全的。)适合⽤用不不变模式，技术就是单例例模式，这样可以共享实例例，提⾼高性能。

57. 线程池原理理：
 1、使⽤用场景：假设⼀一个服务器器完成⼀一项任务所需时间为：T1-创建线程时间，T2-在线程中执⾏行行任务的时间，T3-销毁线程时间。

如果T1+T3远⼤大于T2，则可以使⽤用线程池，以提⾼高服务器器性能；

 2、组成：

 1、线程池管理理器器（ThreadPool）：⽤用于创建并管理理线程池，包括 创建线程池，销毁线程池，添加新任务；

 2、⼯工作线程（PoolWorker）：线程池中线程，在没有任务时处于等待状态，可以循环的执⾏行行任务；

 3、任务接⼝口（Task）：每个任务必须实现的接⼝口，以供⼯工作线程调度任务的执⾏行行，它主要规定了了任务的⼊入⼝口，任务执⾏行行完后

的收尾⼯工作，任务的执⾏行行状态等；

 4、任务队列列（taskQueue）：⽤用于存放没有处理理的任务。提供⼀一种缓冲机制。

 2、原理理：线程池技术正是关注如何缩短或调整T1,T3时间的技术，从⽽而提⾼高服务器器程序性能的。它把T1，T3分别安排在服务器器程

序的启动和结束的时间段或者⼀一些空闲的时间段，这样在服务器器程序处理理客户请求时，不不会有T1，T3的开销了了。

 3、⼯工作流程：

 1、线程池刚创建时，⾥里里⾯面没有⼀一个线程(也可以设置参数prestartAllCoreThreads启动预期数量量主线程)。任务队列列是作

为参数传进来的。不不过，就算队列列⾥里里⾯面有任务，线程池也不不会⻢马上执⾏行行它们。

 2、当调⽤用 execute() ⽅方法添加⼀一个任务时，线程池会做如下判断：

1. 如果正在运⾏行行的线程数量量⼩小于 corePoolSize，那么⻢马上创建线程运⾏行行这个任务；

2. 如果正在运⾏行行的线程数量量⼤大于或等于 corePoolSize，那么将这个任务放⼊入队列列；

3. 如果这时候队列列满了了，⽽而且正在运⾏行行的线程数量量⼩小于 maximumPoolSize，那么还是要创建⾮非核⼼心线程⽴立刻运⾏行行这个

任务；

4. 如果队列列满了了，⽽而且正在运⾏行行的线程数量量⼤大于或等于 maximumPoolSize，那么线程池会抛出异常

RejectExecutionException。

 3、当⼀一个线程完成任务时，它会从队列列中取下⼀一个任务来执⾏行行。

 4、当⼀一个线程⽆无事可做，超过⼀一定的时间（keepAliveTime）时，线程池会判断，如果当前运⾏行行的线程数⼤大于

corePoolSize，那么这个线程就被停掉。所以线程池的所有任务完成后，它最终会收缩到 corePoolSize 的⼤大⼩小。

58. java锁多个对象：
 例例如： 在银⾏行行系统转账时，需要锁定两个账户，这个时候，顺序使⽤用两个synchronized可能存在死锁的情况，在⽹网上搜索到下⾯面的例例

⼦子：

1 public class Bank {
2 final static Object obj_lock = new Object();
3 ​

4 // Deadlock crisis 死锁
5 public void transferMoney(Account from, Account to, int number) {
6 synchronized (from) {
7 synchronized (to) {
8 from.debit();
9 to.credit();
10 }
11 }
12 }
13 ​

14 // Thread safe

15 public void transferMoney2(final Account from, final Account to, int number) {
16 class Help {
17 void transferMoney2() {
18 from.debit();
19 to.credit();
20 }
21 }
22 ​

23 //通过hashCode⼤大⼩小调整加锁顺序
24 int fromHash = from.hashCode();
25 int toHash = to.hashCode();
26 ​

27 if (fromHash < toHash) {
28 synchronized (from) {
29 synchronized (to) {
30 new Help().transferMoney2();
31 }
32 }
33 } else if (toHash < fromHash) {
34 synchronized (to) {
35 synchronized (from) {
36 new Help().transferMoney2();
37 }
38 }
39 } else {
40 synchronized (obj_lock) {
41 synchronized (to) {
42 synchronized (from) {
43 new Help().transferMoney2();
44 }
45 }
46 }
47 }
48 }
49 }
 若操作账户A，B：

1. A的hashCode⼩小于B， 先锁A再锁B

2. B的hashCode⼩小于A， 先锁B再锁A

3. 产⽣生的hashCode相等，先锁住⼀一个全局静态变量量，在锁A，B

 这样就避免了了两个线程分别操作账户A,B和B,A⽽而产⽣生死锁的情况。

 需要为Account对象写⼀一个好的hashCode算法，使得不不同账户间产⽣生的hashCode尽量量不不同。

59. java线程如何启动：
 1、继承Thread类；

 2、实现Runnable接⼝口；

 3、直接在函数体内：

 4、⽐比较：

 1、实现Runnable接⼝口优势：

 1）适合多个相同的程序代码的线程去处理理同⼀一个资源

 2）可以避免java中的单继承的限制

 3）增加程序的健壮性，代码可以被多个线程共享，代码和数据独⽴立。

 2、继承Thread类优势：

 1）可以将线程类抽象出来，当需要使⽤用抽象⼯工⼚厂模式设计时。

 2）多线程同步

 3、在函数体使⽤用优势

 1）⽆无需继承thread或者实现Runnable，缩⼩小作⽤用域。

60. java中加锁的⽅方式有哪些,如何实现怎么个写法.

 1、java中有两种锁：⼀一种是⽅方法锁或者对象锁(在⾮非静态⽅方法或者代码块上加锁)，第⼆二种是类锁(在静态⽅方法或者class上加锁)；

 2、注意：其他线程可以访问未加锁的⽅方法和代码；synchronized同时修饰静态⽅方法和实例例⽅方法，但是运⾏行行结果是交替进⾏行行的，这证明

了了类锁和对象锁是两个不不⼀一样的锁，控制着不不同的区域，它们是互不不⼲干扰的。

 3、示例例代码：

 1、⽅方法锁和同步代码块：

1 public class TestSynchronized
2 {
3 public void test1()
4 {
5 synchronized(this)
6 {
7 int i = 5;
8 while(i-- > 0)
9 {
10 System.out.println(Thread.currentThread().getName() + " : " + i);
11 try
12 {
13 Thread.sleep(500);
14 }
15 catch (InterruptedException ie)
16 {
17 }
18 }
19 }
20 }
21
22 public synchronized void test2()
23 {
24 int i = 5;
25 while(i-- > 0)
26 {
27 System.out.println(Thread.currentThread().getName() + " : " + i);
28 try
29 {
30 Thread.sleep(500);
31 }
32 catch (InterruptedException ie)
33 {
34 }
35 }
36 }
37
38 public static void main(String[] args)
39 {
40 final TestSynchronized myt2 = new TestSynchronized();
41 Thread test1 = new Thread(new Runnable() { public void run() { myt2.test1(); } },
42 Thread test2 = new Thread(new Runnable() { public void run() { myt2.test2(); } },
43 test1.start();;
44 test2.start();

45 // TestRunnable tr=new TestRunnable();
46 // Thread test3=new Thread(tr);
47 // test3.start();
48 }
49 }

 2、类锁：

1 public class TestSynchronized
2 {
3 public void test1()
4 {
5 synchronized(TestSynchronized.class)
6 {
7 int i = 5;
8 while(i-- > 0)
9 {
10 System.out.println(Thread.currentThread().getName() + " : " + i);
11 try
12 {
13 Thread.sleep(500);
14 }
15 catch (InterruptedException ie)
16 {
17 }
18 }
19 }
20 }
21
22 public static synchronized void test2()
23 {
24 int i = 5;
25 while(i-- > 0)
26 {
27 System.out.println(Thread.currentThread().getName() + " : " + i);
28 try
29 {
30 Thread.sleep(500);
31 }
32 catch (InterruptedException ie)
33 {
34 }
35 }
36 }
37
38 public static void main(String[] args)
39 {
40 final TestSynchronized myt2 = new TestSynchronized();
41 Thread test1 = new Thread(new Runnable() { public void run() { myt2.test1(); } },
42 Thread test2 = new Thread(new Runnable() { public void run() { TestSynchronized.test2
43 test1.start();
44 test2.start();
45 // TestRunnable tr=new TestRunnable();

46 // Thread test3=new Thread(tr);
47 // test3.start();
48 }
49
50 }

62、如何保证数据不不丢失：
1、使⽤用消息队列列，消息持久化；
2、添加标志位：未处理理 0，处理理中 1，已处理理 2。定时处理理。

63、ThreadLocal为什什么会发⽣生内存泄漏漏？
1、threadlocal原理理图：

2、OOM实现：
1、ThreadLocal的实现是这样的：每个Thread 维护⼀一个 ThreadLocalMap 映射表，这个映射表的 key 是 ThreadLocal实
例例本身，value 是真正需要存储的 Object。
2、也就是说 ThreadLocal 本身并不不存储值，它只是作为⼀一个 key 来让线程从 ThreadLocalMap 获取 value。值得注意的
是图中的虚线，表示 ThreadLocalMap 是使⽤用 ThreadLocal 的弱引⽤用作为 Key 的，弱引⽤用的对象在 GC 时会被回收。
3、ThreadLocalMap使⽤用ThreadLocal的弱引⽤用作为key，如果⼀一个ThreadLocal没有外部强引⽤用来引⽤用它，那么系统 GC
的时候，这个ThreadLocal势必会被回收，这样⼀一来，ThreadLocalMap中就会出现key为null的Entry，就没有办法访问这
些key为null的Entry的value，如果当前线程再迟迟不不结束的话，这些key为null的Entry的value就会⼀一直存在⼀一条强引⽤用
链：Thread Ref -> Thread -> ThreaLocalMap -> Entry -> value永远⽆无法回收，造成内存泄漏漏。

3、预防办法：在ThreadLocal的get(),set(),remove()的时候都会清除线程ThreadLocalMap⾥里里所有key为null的value。
但是这些被动的预防措施并不不能保证不不会内存泄漏漏：

（1）使⽤用static的ThreadLocal，延⻓长了了ThreadLocal的⽣生命周期，可能导致内存泄漏漏。
（2）分配使⽤用了了ThreadLocal⼜又不不再调⽤用get(),set(),remove()⽅方法，那么就会导致内存泄漏漏，因为这块内存⼀一直存在。

64、jdk8中对ConcurrentHashmap的改进
1. Java 7为实现并⾏行行访问，引⼊入了了Segment这⼀一结构，实现了了分段锁，理理论上最⼤大并发度与Segment个数相等。
2. Java 8为进⼀一步提⾼高并发性，摒弃了了分段锁的⽅方案，⽽而是直接使⽤用⼀一个⼤大的数组。同时为了了提⾼高哈希碰撞下的寻址性能，
Java 8在链表⻓长度超过⼀一定阈值（8）时将链表（寻址时间复杂度为O(N)）转换为红⿊黑树（寻址时间复杂度为O(long(N))）。
其数据结构如下图所示

3、源码：

1 public V put(K key, V value) {
2 return putVal(key, value, false);
3 }
4 ​

5 /** Implementation for put and putIfAbsent */
6 final V putVal(K key, V value, boolean onlyIfAbsent) {
7 //ConcurrentHashMap 不不允许插⼊入null键，HashMap允许插⼊入⼀一个null键
8 if (key == null || value == null) throw new NullPointerException();
9 //计算key的hash值
10 int hash = spread(key.hashCode());
11 int binCount = 0;
12 //for循环的作⽤用：因为更更新元素是使⽤用CAS机制更更新，需要不不断的失败重试，直到成功为⽌止。
13 for (Node<K,V>[] tab = table;;) {
14 // f：链表或红⿊黑⼆二叉树头结点，向链表中添加元素时，需要synchronized获取f的锁。
15 Node<K,V> f; int n, i, fh;
16 //判断Node[]数组是否初始化，没有则进⾏行行初始化操作
17 if (tab == null || (n = tab.length) == 0)
18 tab = initTable();
19 //通过hash定位Node[]数组的索引坐标，是否有Node节点，如果没有则使⽤用CAS进⾏行行添加（链表的头结点），添加失败则进⼊入下次循环。
20 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
21 if (casTabAt(tab, i, null,
22 new Node<K,V>(hash, key, value, null)))
23 break; // no lock when adding to empty bin
24 }
25 //检查到内部正在移动元素（Node[] 数组扩容）
26 else if ((fh = f.hash) == MOVED)
27 //帮助它扩容
28 tab = helpTransfer(tab, f);
29 else {
30 V oldVal = null;
31 //锁住链表或红⿊黑⼆二叉树的头结点
32 synchronized (f) {
33 //判断f是否是链表的头结点
34 if (tabAt(tab, i) == f) {
35 //如果fh>=0 是链表节点
36 if (fh >= 0) {

37 binCount = 1;
38 //遍历链表所有节点
39 for (Node<K,V> e = f;; ++binCount) {
40 K ek;
41 //如果节点存在，则更更新value
42 if (e.hash == hash &&
43 ((ek = e.key) == key ||
44 (ek != null && key.equals(ek)))) {
45 oldVal = e.val;
46 if (!onlyIfAbsent)
47 e.val = value;
48 break;
49 }
50 //不不存在则在链表尾部添加新节点。
51 Node<K,V> pred = e;
52 if ((e = e.next) == null) {
53 pred.next = new Node<K,V>(hash, key,
54 value, null);
55 break;
56 }
57 }
58 }
59 //TreeBin是红⿊黑⼆二叉树节点
60 else if (f instanceof TreeBin) {
61 Node<K,V> p;
62 binCount = 2;
63 //添加树节点
64 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
65 value)) != null) {
66 oldVal = p.val;
67 if (!onlyIfAbsent)
68 p.val = value;
69 }
70 }
71 }
72 }
73
74 if (binCount != 0) {
75 //如果链表⻓长度已经达到临界值8 就需要把链表转换为树结构
76 if (binCount >= TREEIFY_THRESHOLD)
77 treeifyBin(tab, i);
78 if (oldVal != null)
79 return oldVal;
80 break;
81 }
82 }
83 }
84 //将当前ConcurrentHashMap的size数量量+1
85 addCount(1L, binCount);
86 return null;
87 }

65、concurrent包下有哪些类？
ConcurrentHashMap、Future、FutureTask、AtomicInteger...

66、线程a,b,c,d运⾏行行任务，怎么保证当a,b,c线程执⾏行行完再执⾏行行d线程?
1、CountDownLatch类
 ⼀一个同步辅助类，常⽤用于某个条件发⽣生后才能执⾏行行后续进程。给定计数初始化CountDownLatch，调⽤用countDown(）⽅方
法，在计数到达零之前，await⽅方法⼀一直受阻塞。
 重要⽅方法为countdown()与await()；
2、join⽅方法
 将线程B加⼊入到线程A的尾部，当A执⾏行行完后B才执⾏行行。

1 public static void main(String[] args) throws Exception {
2 Th t = new Th("t1");
3 Th t2 = new Th("t2");
4 t.start();
5 t.join();
6 t2.start();
7 }

3、notify、wait⽅方法，Java中的唤醒与等待⽅方法，关键为synchronized代码块，参数线程间应相同，也常⽤用Object作为参
数。

67、⾼高并发系统如何做性能优化？如何防⽌止库存超卖？
 1、⾼高并发系统性能优化：
 优化程序，优化服务配置，优化系统配置
 1.尽量量使⽤用缓存，包括⽤用户缓存，信息缓存等，多花点内存来做缓存，可以⼤大量量减少与数据库的交互，提⾼高性能。
 2.⽤用jprofiler等⼯工具找出性能瓶颈，减少额外的开销。
 3.优化数据库查询语句句，减少直接使⽤用hibernate等⼯工具的直接⽣生成语句句（仅耗时较⻓长的查询做优化）。
 4.优化数据库结构，多做索引，提⾼高查询效率。
 5.统计的功能尽量量做缓存，或按每天⼀一统计或定时统计相关报表，避免需要时进⾏行行统计的功能。
 6.能使⽤用静态⻚页⾯面的地⽅方尽量量使⽤用，减少容器器的解析（尽量量将动态内容⽣生成静态html来显示）。
 7.解决以上问题后，使⽤用服务器器集群来解决单台的瓶颈问题。
 2、防⽌止库存超卖：
 1、悲观锁：在更更新库存期间加锁，不不允许其它线程修改；
 1、数据库锁：select xxx for update；
 2、分布式锁；
 2、乐观锁：使⽤用带版本号的更更新。每个线程都可以并发修改，但在并发时，只有⼀一个线程会修改成功，其它会返回失
败。

 1、redis watch：监视键值对，作⽤用时如果事务提交exec时发现监视的监视对发⽣生变化，事务将被取消。
 3、消息队列列：通过 FIFO 队列列，使修改库存的操作串串⾏行行化。
 4、总结：总的来说，不不能把压⼒力力放在数据库上，所以使⽤用 "select xxx for update" 的⽅方式在⾼高并发的场景下是不不可⾏行行
的。FIFO 同步队列列的⽅方式，可以结合库存限制队列列⻓长，但是在库存较多的场景下，⼜又不不太适⽤用。所以相对来说，我会倾向于
选择：乐观锁 / 缓存锁 / 分布式锁的⽅方式。

68、线程池的参数配置，为什什么java官⽅方提供⼯工⼚厂⽅方法给线程池？
1、线程池简介：

2、核⼼心参数：

3、⼯工⼚厂⽅方法作⽤用：ThreadPoolExecutor类就是Executor的实现类，但ThreadPoolExecutor在使⽤用上并不不是那么⽅方便便，在实
例例化时需要传⼊入很多歌参数，还要考虑线程的并发数等与线程池运⾏行行效率有关的参数，所以官⽅方建议使⽤用Executors⼯工程类来
创建线程池对象。

69、说说java同步机制，java有哪些锁，每个锁的特性？
70、说说volatile如何保证可⻅见性，从cpu层⾯面分析？

